UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL ESCOLA DE ENGENHARIA PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE PRODUÇÃO

METODOLOGIA PARA IMPLEMENTAÇÃO DE SISTEMAS DE PREVISÃO DE DEMANDA

Fernando Rezende Pellegrini

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL ESCOLA DE ENGENHARIA PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE PRODUÇÃO

METODOLOGIA PARA IMPLEMENTAÇÃO DE SISTEMAS DE PREVISÃO DE DEMANDA

Fernando Rezende Pellegrini

Orientador: Professor Flávio Sanson Fogliatto, Ph.D.

Banca Examinadora:

Dinara Westphalen Xavier Fernandez, Dra. Depto. Estatística / UFRGS

Francisco José Kliemann Neto, Dr. PPGEP / UFRGS

João Luiz Becker, Ph.D. PPGA / UFRGS

Dissertação submetida ao Programa de Pós-Graduação em Engenharia de Produção como requisito parcial à obtenção do título de MESTRE EM ENGENHARIA DE PRODUÇÃO

Área de concentração: Qualidade

Porto Alegre, setembro de 2000.

Esta dissertação foi julgada adequada para a obtenção do título de Mestre em Engenharia de Produção e aprovada em sua forma final pelo Orientador e pela Banca Examinadora designada pelo Programa de Pós-Graduação em Engenharia de Produção.

Prof. Flávio Sanson Fogliatto, Ph.D.
Orientador

Prof. Luís Antônio Lindau, Ph.D.
Coordenador PPGEP/UFRGS

Banca Examinadora:

Dinara Westphalen Xavier Fernandez, Dra. Depto. Estatística / UFRGS

Francisco José Kliemann Neto, Dr. PPGEP / UFRGS

João Luiz Becker, Ph.D. PPGA / UFRGS

AGRADECIMENTOS

Aos colegas, professores e funcionários do PPGEP / UFRGS, que direta ou indiretamente contribuíram para a concretização desta dissertação.

Ao Frigorífico Excelsior, na pessoa de João Fernando Baumhardt, o qual possibilitou a realização do estudo de caso contido neste trabalho.

Ao meu orientador, Flávio Sanson Fogliatto, pela confiança e dedicação.

ÍNDICE

LISTA DE FIGURAS	viii
LISTA DE TABELAS	X
RESUMO	XV
ABSTRACT	Xvi
CAPÍTULO 1	1
1 Introdução	
1.1 Justificativa do Trabalho	3
1.2 Objetivos do Trabalho	4
1.2.1 Objetivo Principal	4
1.2.2 Objetivos Específicos	5
1.3 Estrutura do Trabalho	5
1.4 Delimitação	6
CAPÍTULO 2	7
2 Revisão Bibliográfica	7
2.1 Modelos de Suavização Exponencial	8
2.1.1 Suavização Exponencial para um Processo Constante	9
2.1.2 Modelo de Holt	10
2.1.3 Modelos de Winters	12

2.1.3.1 Modelo Sazonal Multiplicativo	13
2.1.3.2 Modelo Sazonal Aditivo	15
2.2 Modelos de Decomposição	16
2.3 Modelos de Box-Jenkins	17
2.3.1 Conceitos Básicos para a Compreensão dos Modelos Box-Jenkins	17
2.3.2 Modelos Autoregressivos	22
2.3.3 Modelos de Média-Móvel	25
2.3.4 Modelos Mistos Autoregressivos - Média Móvel	28
2.3.5 Modelos Não Estacionários	29
2.3.6 Modelos Sazonais	33
2.3.7 Modelagem da Série Temporal	34
2.3.7.1 Identificação do Modelo	35
2.3.7.2 Estimativa dos Parâmetros do Modelo	36
2.3.7.3 Verificação do Modelo	37
2.3.7.4 Forecasting	38
2.3.7.5 Exemplos de Construção de Modelos ARIMA	38
2.3.8 Variações dos Modelos de Box-Jenkins	47
2.3.9 Comentários sobre os Modelos de Box-Jenkins	48
2.4 Redes Neurais	49
2.5 Critérios para Avaliar a Adequação de Modelos a Séries Temporais	50
CAPÍTULO 3	52
3 Metodologia Proposta para a Estruturação de um Sistema de <i>Forecasting</i>	52
3.1 Definição do Problema	53
3.2 Coleta de Informações	55
3.2.1 Montagem do Banco de Dados	55
3.2.2 Classificação dos Produtos	56

3.2.3	B Definição dos Níveis de Agregação	57
3.3	Seleção do Pacote Computacional	58
3.3.	Pacotes Computacionais Estatísticos de Uso Genérico	59
3.3.2	2 Pacotes Computacionais Específicos	60
3.4	Análise Preliminar	60
3.5	Escolha e Validação dos Modelos	61
3.6	Verificação do Sistema	63
CAPÍTU	ЛО 4	64
4 Estu	ido de Caso	64
4.1	A Empresa	64
4.2	Estruturação do Sistema de <i>Forecasting</i>	68
4.2.	1 Classificação dos Produtos	68
4.2.2	2 Análise e Previsões das Séries Temporais	71
4.2	2.2.1 Classe A	72
4.2	2.2.2 Classe B	93
4	2.2.3 Classe C	101
4.3	Comentários Finais	102
CAPÍTU	ЛО 5	106
5 Con	clusão	106
REFERÍ	ÊNCIAS BIBLIOGRÁFICAS	108
ANEXO)	112

LISTA DE FIGURAS

FIGURA 1. Relação entre <i>forecasting</i> e planejamento	3
FIGURA 2. Características de uma série temporal	8
FIGURA 3. Séries temporais	18
FIGURA 4. Série temporal não estacionária na média	30
FIGURA 5. Série temporal não estacionária na média e na declividade	30
FIGURA 6. Redução da não estacionariedade de uma série temporal após sucessivas	
diferenciações	31
FIGURA 7. Gráfico e linha de média da série temporal apresentada na Tabela 5	39
FIGURA 8. FAC e FACP da série temporal representada na Figura 7	40
FIGURA 9. FAC dos resíduos da série representada na Figura 7	41
FIGURA 10. Gráfico e linha de média da série temporal apresentada na Tabela 6	42
FIGURA 11. FAC e FACP da série temporal representada na Figura 10	42
FIGURA 12. FAC dos resíduos da série representada na Figura 10	43
FIGURA 13. Gráfico e linha de tendência da série temporal apresentada na Tabela 7	44
FIGURA 14. FAC e FACP da série temporal representada na Figura 13	45
FIGURA 15. Gráfico e linha de média da série temporal apresentada na Tabela 7 após	s a
primeira diferenciação	45
FIGURA 16. FAC e FACP da série temporal representada na Figura 15	46
FIGURA 17. FAC dos resíduos da série representada na Figura 15	47
FIGURA 18. Neurônio artificial	49
FIGURA 19. Rede neural de 2 camadas com 4 entradas e 2 saídas	50
FIGURA 20. Relação entre acurácia e custo do <i>forecasting</i>	54
FIGURA 21. Modelagem da série Mortadela Fatiada antes da remoção de pontos espú	ários73
FIGURA 22. Modelagem da série Mortadela Fatiada após a remoção de pontos espúri	ios 74

FIGURA 23.	Modelagem da série Mortadela Fatiada estratificada para clientes do tipo
	distribuidores (modelagem obtida após tratamento de valores espúrios na
	série temporal)
FIGURA 24.	Modelagem da série Mortadela Fatiada estratificada para clientes do tipo
	supermercados (modelagem obtida após tratamento de valores espúrios na
	série temporal)
FIGURA 25.	Modelagem da série Mortadela Fatiada estratificada para clientes do tipo
	outros (modelagem obtida após tratamento de valores espúrios na
	série temporal)
FIGURA 26.	Modelagem da série Mortadela Tubo após a remoção de pontos espúrios80
FIGURA 27.	Modelagem da série Mortadela Tubo estratificada para clientes do tipo
	distribuidores (modelagem obtida após tratamento de valores espúrios na
	série temporal)
FIGURA 28.	Modelagem da série Mortadela Tubo estratificada para clientes do tipo
	supermercados84
FIGURA 29.	Modelagem da série Mortadela Tubo estratificada para clientes do tipo
	outros85
FIGURA 30.	Modelagem da série Presunto Cozido, após tratamento dos pontos espúrios 87
FIGURA 31.	Modelagem da série Presunto Cozido estratificada para clientes do tipo
	distribuidores89
FIGURA 32.	Modelagem da série Presunto Cozido estratificada para clientes do tipo
	supermercados91
FIGURA 33.	Modelagem da série Presunto Cozido estratificada para clientes do tipo
	outros92
FIGURA 34.	Modelagem da série Fiambres após tratamento de valores espúrios93
FIGURA 35.	Modelagem da série Linguiças após tratamento de valores espúrios95
FIGURA 36.	Modelagem da série Mortadela Outros após tratamento de valores espúrios 97
FIGURA 37.	Modelagem da série Salsichas 3 kg após tratamento de valores espúrios 98
FIGURA 38.	Modelagem da série Salsichas Auto-Serviço após tratamento de valores
	espúrios
FIGURA 39.	Modelagem da série Classe C após tratamento de valores espúrios

LISTA DE TABELAS

TABELA 1.	Previsão de demanda de um eletrodoméstico	9
TABELA 2.	Previsão de demanda pelo método de Holt	12
TABELA 3.	Previsão de demanda pelo modelo multiplicativo de Winters	15
TABELA 4.	Desenvolvimento para o cálculo da autocorrelação de lag 1 da série utilizada	
	na Tabela 5	22
TABELA 5.	Série temporal obtida em Morettin & Toloi	39
TABELA 6.	Série temporal obtida em Fuller	41
TABELA 7.	Usuários conectados a um servidor da internet durante um período de 100	
	minutos	.44
TABELA 8.	Comparação entre medidas de erro para dois diferentes modelos	51
TABELA 9.	Carnes curadas defumadas produzidas pela empresa e pesos em que são	
	comercializadas	.65
TABELA 10	. Embutidos crus frescos produzidos pela empresa e pesos em que são	
	comercializados	.66
TABELA 11	. Embutidos escaldados produzidos pela empresa e pesos em que são	
	comercializados	.67
TABELA 12	. Embutidos crus frescos produzidos pela empresa e pesos em que são	
	comercializados	.67
TABELA 13	. Classificação ABC das famílias de produtos	70
TABELA 14	. Dados do modelo selecionado para o produto Mortadela Fatiada, antes da	
	remoção de pontos espúrios	73
TABELA 15	. Dados do modelo selecionado para o produto Mortadela Fatiada, após a	
	remoção de pontos espúrios	74
TABELA 16	. Demanda prevista, limites superior e inferior de confiança (95 %) e demand	a
	realizada para a série Mortadela Fatiada, no horizonte de forecasting	.75

TABELA 17.	Dados do modelo selecionado para o produto Mortadela Fatiada,
	estratificada para clientes do tipo <i>distribuidores</i>
TABELA 18.	Demanda prevista, limites superior e inferior de confiança (95 %) e demanda
	realizada para o produto Mortadela Fatiada no horizonte de forecasting,
	estratificada para clientes do tipo <i>distribuidores</i>
TABELA 19.	Dados do modelo selecionado para o produto Mortadela Fatiada, estratificada
	para clientes do tipo <i>supermercados</i>
TABELA 20.	Demanda prevista, limites superior e inferior de confiança (95 %) e demanda
	realizada para o produto Mortadela Fatiada no horizonte de forecasting,
	estratificada para clientes do tipo <i>supermercados</i>
TABELA 21.	Dados do modelo selecionado para o produto Mortadela Fatiada, estratificada
	para clientes do tipo <i>outros</i>
TABELA 22.	Demanda prevista, limites superior e inferior de confiança (95 %) e demanda
	realizada para o produto Mortadela Fatiada no horizonte de forecasting,
	estratificada para clientes do tipo <i>outros</i>
TABELA 23.	Dados do modelo selecionado para o produto Mortadela Tubo, após a
	remoção de pontos espúrios
TABELA 24.	Demanda prevista, limites superior e inferior de confiança (95 %) e demanda
	realizada para a série Mortadela Tubo, no horizonte de <i>forecasting</i> 81
TABELA 25.	Dados do modelo selecionado para o produto Mortadela Tubo, estratificada
	para clientes do tipo <i>distribuidores</i> 82
TABELA 26.	Demanda prevista, limites superior e inferior de confiança (95 %) e demanda
	realizada para o produto Mortadela Tubo no horizonte de forecasting,
	estratificada para clientes do tipo <i>distribuidores</i>
TABELA 27.	Dados do modelo selecionado para o produto Mortadela Tubo, estratificada
	para clientes do tipo <i>supermercados</i>
TABELA 28.	Demanda prevista, limites superior e inferior de confiança (95 %) e demanda
	realizada para o produto Mortadela Tubo no horizonte de forecasting,
	estratificada para clientes do tipo <i>supermercados</i> 85
TABELA 29.	Dados do modelo selecionado para o produto Mortadela Tubo, estratificada
	para clientes do tipo <i>outros</i>
TABELA 30.	Demanda prevista, limites superior e inferior de confiança (95 %) e demanda
	realizada para o produto Mortadela Tubo no horizonte de forecasting,
	estratificada para clientes do tipo <i>outros</i>

TABELA 31.	Dados do modelo selecionado para o produto Presunto Cozido, após	
	tratamento de valores espúrios	;7
TABELA 32.	Demanda prevista, limites superior e inferior de confiança (95 %) e demanda	
	realizada para a série Presunto Cozido, no horizonte de forecasting	38
TABELA 33.	Dados do modelo selecionado para o produto Presunto Cozido, estratificada	
	para clientes do tipo distribuidores	39
TABELA 34.	Demanda prevista, limites superior e inferior de confiança (95 %) e demanda	
	realizada para o produto Presunto Cozido no horizonte de forecasting,	
	estratificada para clientes do tipo distribuidores.	90
TABELA 35.	Dados do modelo selecionado para o produto Presunto Cozido, estratificada	
	para clientes do tipo <i>supermercados</i> 9	1
TABELA 36.	Demanda prevista, limites superior e inferior de confiança (95 %) e demanda	
	realizada para o produto Presunto Cozido no horizonte de forecasting,	
	estratificada para clientes do tipo <i>supermercados</i> .) 1
TABELA 37.	Dados do modelo selecionado para o produto Presunto Cozido, estratificada	
	para clientes do tipo <i>outros</i>	92
TABELA 38.	Demanda prevista, limites superior e inferior de confiança (95 %) e demanda	
	realizada para o produto Presunto Cozido no horizonte de forecasting,	
	estratificada para clientes do tipo <i>outros</i>) 2
TABELA 39.	Dados do modelo selecionado para a série Fiambres após o tratamento de	
	valores espúrios9)4
TABELA 40.	Demanda prevista, limites superior e inferior de confiança (95 %) e demanda	
	realizada para a série Fiambres, no horizonte de forecasting	94
TABELA 41.	Dados do modelo selecionado para a série Linguiças após tratamento de	
	valores espúrios9)5
TABELA 42.	Demanda prevista, limites superior e inferior de confiança (95 %) e demanda	
	realizada para a série Linguiças, no horizonte de forecasting	96
TABELA 43.	Dados do modelo selecionado para a série Mortadela Outros após tratamento	
	de valores espúrios9	6
TABELA 44.	Demanda prevista, limites superior e inferior de confiança (95 %) e demanda	
	realizada para a série Mortadela Outros, no horizonte de <i>forecasting</i> 9)7
TABELA 45.	Dados do modelo selecionado para a série Salsichas 3 kg após tratamento de	
	valores esnúrios	2(

TABELA 46. Demanda prevista, limites superior e inferior de confiança (95 %) e deman	
realizada para a série Salsichas 3 kg, no horizonte de forecasting	99
TABELA 47. Dados do modelo selecionado para a série Salsichas Auto-Serviço após	
tratamento de valores espúrios	99
TABELA 48. Demanda prevista, limites superior e inferior de confiança (95 %) e demanda prevista, limites superior e inferior de confiança (95 %) e demanda prevista, limites superior e inferior de confiança (95 %) e demanda prevista, limites superior e inferior de confiança (95 %) e demanda prevista, limites superior e inferior de confiança (95 %) e demanda prevista, limites superior e inferior de confiança (95 %) e demanda prevista, limites superior e inferior de confiança (95 %) e demanda prevista (95 %) e demanda e	nda
realizada para a série Salsichas Auto-Serviço, no horizonte de forecasting	100
TABELA 49. Dados do modelo selecionado para a série Classe C após tratamento de	
valores espúrios	101
TABELA 50. Demanda prevista, limites superior e inferior de confiança (95 %) e demanda prevista, limites superior e inferior de confiança (95 %) e demanda prevista, limites superior e inferior de confiança (95 %) e demanda prevista, limites superior e inferior de confiança (95 %) e demanda prevista, limites superior e inferior de confiança (95 %) e demanda prevista, limites superior e inferior de confiança (95 %) e demanda prevista, limites superior e inferior de confiança (95 %) e demanda prevista (95 %) e demanda e	nda
realizada para a série Classe C, no horizonte de forecasting	102
TABELA 51. Sumário dos ajustes obtidos na modelagem das séries do estudo de caso	104
TABELA A 1. Demanda da série Mortadela Fatiada antes da remoção de pontos espúrio	s.112
TABELA A 2. Demanda da série Mortadela Fatiada após a remoção de pontos espúrios.	113
TABELA A 3. Demanda da série Mortadela Fatiada estratificada para clientes do tipo	
distribuidores após a remoção de pontos espúrios	114
TABELA A 4. Demanda da série Mortadela Fatiada estratificada para clientes do tipo	
supermercados após a remoção de pontos espúrios	115
TABELA A 5. Demanda da série Mortadela Fatiada estratificada para clientes do tipo	
outros após a remoção de pontos espúrios	116
TABELA A 6. Demanda da série Mortadela Tubo após a remoção de pontos espúrios	117
TABELA A 7. Demanda da série Mortadela Tubo estratificada para clientes do tipo	
distribuidores após a remoção de pontos espúrios	118
TABELA A 8. Demanda da série Mortadela Tubo estratificada para clientes do tipo	
supermercados após a remoção de pontos espúrios	119
TABELA A 9. Demanda da série Mortadela Tubo estratificada para clientes do tipo	
outros após a remoção de pontos espúrios	120
TABELA A 10. Demanda da série Presunto Cozido após a remoção de pontos espúrios.	121
TABELA A 11. Demanda da série Presunto Cozido estratificada para clientes do tipo	
distribuidores após a remoção de pontos espúrios	122
TABELA A 12. Demanda da série Presunto Cozido estratificada para clientes do tipo	
supermercados após a remoção de pontos espúrios	123
TABELA A 13. Demanda da série Presunto Cozido estratificada para clientes do tipo	
outros após a remoção de pontos espúrios	124
TABELA A 14. Demanda da série Fiambres após a remoção de pontos espúrios	125

TABELA A 15.	Demanda da série Linguiças após a remoção de pontos espúrios1	26
TABELA A 16.	Demanda da série Mortadela Outros após a remoção de pontos	
	espúrios1	27
TABELA A 17.	Demanda da série Salsichas 3 kg após a remoção de pontos espúrios	128
TABELA A 18.	Demanda da série Salsichas Auto-Serviço após a remoção de pontos	
	espúrios1	29
TABELA A 19.	Demanda da série Classe C após a remoção de pontos espúrios	130

RESUMO

Esta dissertação aborda técnicas de previsão de demanda, com vistas à elaboração de uma metodologia capaz de auxiliar a tomada de decisões no meio empresarial. Para tanto, são apresentados os principais modelos estatísticos de previsão, os quais são capazes de projetar no futuro, padrões e tendências observadas em demandas passadas. Além disto, é formulado um procedimento para a estruturação de um sistema de previsão de demanda. No procedimento proposto, a partir de uma sequência estruturada de passos, são indicadas as diretrizes para a implementação das técnicas de previsão de demanda apresentadas no trabalho. Um estudo de caso, realizado em uma indústria do ramo alimentício, faz a integração das técnicas e procedimentos apresentados.

ABSTRACT

This thesis reviews forecasting techniques and their application in industry. Our main objective is to propose and test a methodology that allows forecasting techniques to be used as a supporting tool in managerial decision making. For that purpose, we review the main time series analysis models. In short, such models allow the analyst to project into future periods patterns and trends that were recognizable from the analysis of past demand data. We also propose a sequence of steps for setting up and maintaining a forecasting system for predicting future demand of products or services. Our procedure is implemented in six main steps, covering issues such as product classification and the analysis of some software available to proceed with the model calculation. A case study from the food industry illustrates the forecasting techniques reviewed and the steps of the method we propose.

CAPÍTULO 1

1 Introdução

Previsões de demanda desempenham um papel-chave em diversas áreas na gestão de organizações. A área financeira, por exemplo, planeja a necessidade de recursos analisando previsões de demanda de longo prazo; as mesmas previsões também servem às áreas de recursos humanos e marketing, no planejamento de modificações no nível da força de trabalho e no agendamento de promoções de vendas (Krajewski & Ritzman, 1999). Talvez mais do que em qualquer outra área de uma organização, previsões de demanda são essenciais na operacionalização de diversos aspectos do gerenciamento da produção. Alguns exemplos são a gestão de estoques, o desenvolvimento de planos agregados de produção e a viabilização de estratégias de gerenciamento de materiais como o MRP (*Material Requirements Planning* – Planejamento das Necessidades de Materiais); mais exemplos são apresentados em Elsayed & Boucher (1994). Desta forma, técnicas estatísticas para modelagem de dados de demanda têm merecido a atenção de engenheiros e gerentes de produção.

Previsões de demanda são elaboradas utilizando: (i) métodos quantitativos, (ii) métodos qualitativos, ou (iii) combinações de métodos quantitativos e qualitativos.

Métodos quantitativos utilizam dados históricos para prever a demanda em períodos futuros. A previsão da demanda futura requer a construção de modelos matemáticos a partir dos dados disponíveis (ou seja, a partir de dados que descrevem a variação da demanda ao longo do tempo; este grupo de dados é denominado *série temporal*). As diferentes técnicas disponíveis para construção desses modelos são denominadas técnicas de *forecasting*. A técnica de *forecasting* mais difundida nas organizações industriais e de serviços, em grande

parte por encontrar-se disponível em planilhas eletrônicas como Microsoft Excel (1997) e Quattro Pro (1999), é a regressão linear simples (Seber, 1977).

Métodos qualitativos baseiam-se em opiniões de especialistas, os quais fundamentam-se no julgamento de executivos, apreciação do pessoal de vendas e expectativas dos consumidores. Como diferentes indivíduos apresentam preferências distintas, esses métodos são vulneráveis a tendências que podem comprometer a confiabilidade de seus resultados. Dentre os métodos qualitativos mais utilizados, destaca-se o método Delphi, apresentado em Krajewski & Ritzman (1999), entre outros.

Os métodos qualitativos têm sido, historicamente, os mais utilizados na previsão da demanda (Mentzer & Cox, 1997). Tais métodos costumam apresentar um baixo grau de precisão; apesar disto, continuam sendo amplamente utilizados nas empresas, mesmo com a difusão de métodos quantitativos mais avançados, impulsionada pelo avanço na capacidade de processamento e armazenamento de dados computacionais (Sanders & Manrodt, 1994). A utilização dos métodos qualitativos parece estar relacionada ao fato das previsões por eles geradas corresponderem às metas de demanda estabelecidas pelas empresas (Dias, 1999). A escassa fundamentação teórica dessas previsões pode explicar, em grande parte, a baixa acurácia dos métodos qualitativos de *forecasting*.

O *forecasting* é frequentemente confundido com planejamento. No entanto, enquanto o objeto de estudo do planejamento é o comportamento do negócio, sistemas de *forecasting* buscam analisar tal comportamento no tempo futuro. Esta relação é apresentada na Figura 1. Métodos de *forecasting* são usados para prever os resultados de cursos de ação propostos no planejamento: se os resultados não forem potencialmente satisfatórios, o planejamento deve ser revisto. Esse processo deve ser repetido até que os resultados previstos para o planejamento sejam satisfatórios. Planos revisados são então implementados, e os resultados obtidos monitorados para serem usados no próximo período de planejamento. O processo da Figura 1 parece intuitivo. Porém, na prática, muitas organizações revisam previsões, ao invés de revisarem planos.

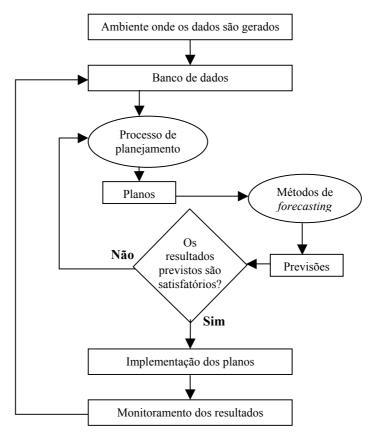


FIGURA 1. Relação entre forecasting e planejamento. (Adaptado de Armstrong, 1999).

O tema desta dissertação consiste na elaboração de uma metodologia para implementação de sistemas de previsão de demanda. Esta metodologia, contribuição original do trabalho, será ilustrada, em parte, através de uma aplicação em uma empresa industrial do ramo alimentício, localizada no Estado do Rio Grande do Sul. Na aplicação em questão, pretende-se fazer um comparativo entre técnicas de previsão de demanda, com vistas a determinação daquelas que melhor se adequem ao perfil de demanda dos produtos manufaturados pela empresa. Para tanto, serão necessários conhecimentos sobre modelagem estatística de dados temporais.

1.1 Justificativa do Trabalho

A tomada de decisões é um fato cotidiano que desempenha um papel relevante dentro das empresas. Atualmente, o alto grau de competitividade no meio empresarial exige a

capacidade de tomar decisões rápidas e precisas. A qualidade da tomada de decisão tem relação direta com os dados disponíveis para o tomador de decisão e com sua habilidade em extrair destes dados informações relevantes.

Através das técnicas de *forecasting*, que são o objeto de estudo dessa dissertação, é possível extrair dos dados passados disponíveis sobre um processo de demanda, informações que permitirão a modelagem matemática de seu comportamento. A suposição de uma continuidade nesse comportamento permite a realização de previsões, cuja qualidade e precisão são muito superiores àquelas das previsões feitas com base intuitiva, baseadas unicamente na experiência dos decisores. Adicionalmente, os modelos são atualizáveis e, uma vez atualizados, eles passam, de imediato, a refletir as alterações do processo, fornecendo prontamente subsídios às novas tomadas de decisão.

São inúmeras as aplicações de *forecasting* dentro de uma empresa. A operacionalização satisfatória de estratégias de planejamento e controle da produção, por exemplo, está fortemente associada a existência de um sistema eficiente de previsão de demanda. Outros exemplos, como a definição de políticas de expansão ou redução da capacidade produtiva, associadas ao planejamento estratégico da empresa, também podem ser facilmente encontrados na literatura (Hill, 1994; Tompkins *et al.*, 1996). Vê-se, então, que o uso do *forecasting* viabiliza, na empresa como um todo, a realização de tomadas de decisão mais ágeis e com maior acurácia, as quais se refletirão em maior velocidade de resposta, em menores perdas e, portanto, em uma maior competitividade no mercado.

1.2 Objetivos do Trabalho

1.2.1 Objetivo Principal

O objetivo principal deste trabalho é elaborar uma metodologia para implementação de sistemas de previsão de demanda. A aplicação principal prevista para essa metodologia deverá ocorrer em empresas do ramo industrial; desta forma, os passos metodológicos propostos devem ser particularmente adequados a este tipo de empresa.

1.2.2 Objetivos Específicos

Os objetivos específicos são analisar técnicas de modelagem, montar um sistema de *forecasting* que utilize critérios para classificação de produtos e fornecer apoio nos pontos citados abaixo:

- Planejamento dos itens a serem manufaturados na linha de produção;
- Planejamento dos prazos de entrega de produtos acabados;
- Planejamento da necessidade de produtos semi-acabados, componentes, materiais e mão-de-obra;
- Controle do estoque de peças de reposição no almoxarifado.

1.3 Estrutura do Trabalho

Esta dissertação está estruturada da seguinte maneira. No capítulo 1, é apresentado o tema abordado, as justificativas para a escolha do mesmo, os objetivos a serem alcançados, e a estrutura e limitações deste trabalho.

No capítulo 2 é feita uma revisão bibliográfica. Através desta revisão, busca-se apresentar de forma concisa, inclusive com o uso de exemplos práticos, as técnicas quantitativas mais utilizadas na área da previsão de demanda.

No capítulo 3 é proposta, de forma genérica, uma metodologia para a estruturação de um sistema de *forecasting*.

No capítulo 4 é apresentado um estudo de caso realizado em uma empresa do ramo alimentício.

O capítulo 5 é reservado para as conclusões e para sugestões de possíveis desdobramentos futuros deste trabalho.

1.4 Delimitação

Esta dissertação descreve uma metodologia aplicada à solução de certo problema específico e, portanto, apresenta limitações. A primeira limitação diz respeito ao escopo teórico do trabalho; as demais limitações estão relacionadas ao estudo de caso apresentado.

As técnicas investigativas utilizadas no trabalho compreendem os modelos de Box-Jenkins e os modelos de suavização exponencial, não sendo abordadas, de forma detalhada, outras técnicas de previsão de demanda.

O estudo de caso apresentado neste trabalho foi realizado em uma empresa específica do setor alimentício do Estado do Rio Grande do Sul. Portanto, não faz parte deste trabalho a generalização dos resultados obtidos a outras empresas do setor.

A aplicação prática acima citada não inclui uma análise financeira do investimento necessário para a implantação das técnicas de *forecasting* na empresa em estudo.

No estudo de caso apresentado, somente serão analisados individualmente os produtos que apresentam maior impacto financeiro para a empresa, sendo os demais tratados agrupadamente.

CAPÍTULO 2

2 Revisão Bibliográfica

A previsão de demanda utilizando métodos quantitativos pode ser feita através de vários modelos matemáticos. O emprego de cada modelo depende basicamente do comportamento da série temporal que se deseja analisar. Uma série temporal pode exibir até quatro características diferentes em seu comportamento: média, sazonalidade, ciclo e tendência (Makridakis *et al.*, 1998). Estas características estão exemplificadas na Figura 2.

A característica de média existe quando os valores da série flutuam em torno de uma média constante. A série possui característica sazonal quando padrões cíclicos de variação se repetem em intervalos relativamente constantes de tempo. A característica cíclica existe quando a série exibe variações ascendentes e descendentes, porém, em intervalos não regulares de tempo. Finalmente, a característica de tendência ocorre quando a série apresenta comportamento ascendente ou descendente por um longo período de tempo.

Toda variação em uma série temporal que não pode ser explicada pelas características demonstradas na Figura 2 é devida ao *ruído aleatório* no processo gerador dos dados; tal ruído não é matematicamente modelável.

A seguir, são apresentados os principais modelos utilizados como métodos quantitativos para previsão de demanda.

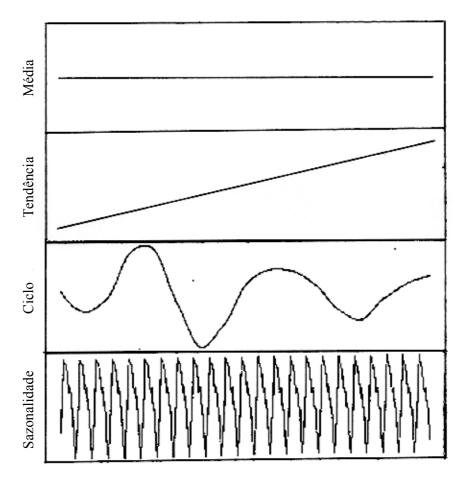


FIGURA 2. Características de uma série temporal. (Adaptado de Makridakis et al., 1998).

2.1 Modelos de Suavização Exponencial

Os modelos de suavização exponencial são amplamente utilizados para previsão de demanda devido a sua simplicidade, facilidade de ajustes e boa acurácia. Estes métodos usam uma ponderação distinta para cada valor observado na série temporal, de modo que valores mais recentes recebam pesos maiores. Assim, os pesos formam um conjunto que decai exponencialmente a partir de valores mais recentes.

2.1.1 Suavização Exponencial para um Processo Constante

Se a série temporal mantém-se constante sobre um nível médio, uma *suavização* exponencial simples pode ser usada para a previsão de valores futuros da série. Sua representação matemática vem dada por (Makridakis *et al.*, 1998)

$$\hat{z}_{t+1} = \alpha z_t + (1 - \alpha)\hat{z}_t,$$

onde \hat{z}_{t+1} é a previsão da demanda para o tempo t+1, feita no período atual t; α é a *constante de suavização*, assumindo valores entre 0 e 1; z_t é o valor observado na série temporal para o tempo t; e, \hat{z}_t é o valor da previsão feita para o tempo t.

Uma forma de medir a acurácia da previsão, é calcular o erro gerado pela mesma; ou seja, $e_t = z_t - \hat{z}_t$.

Para ilustrar estes conceitos, suponha que se deseje saber a previsão de demanda de um eletrodoméstico para os próximos 3 meses. Considere a última demanda observada como sendo 53 unidades e $\alpha = 0,1$. Assim,

 $\hat{z}_1 = 53$, é a estimativa inicial da demanda no tempo t;

 $e_1 = z_1 - \hat{z}_1 = 2$, é a diferença entre o valor real e o valor previsto;

 $\hat{z}_2 = \alpha z_1 + (1 - \alpha)\hat{z}_1 = 0.1 \times 55 + (0.9)53 = 53.2$, é a previsão para o mês 2, feita no mês correspondente a t = 1. O restante dos valores está na Tabela 1.

TABELA 1. Previsão de demanda de um eletrodoméstico.

t	\boldsymbol{z}_{t}	Previsão (\hat{z}_t)	e_{t}
1	55	53	2
2	52	53,2	-1,2
3	54	53,08	0,92

As previsões de demanda (\hat{z}_t) feitas neste exemplo, foram calculadas sempre no período imediatamente anterior $[\hat{z}_t(t-1)]$. Previsões podem ser feitas para mais de um

período; desta forma, porém, não ocorre a atualização do modelo a cada período, aumentando assim o componente de erro.

O valor da constante de suavização α é arbitrário. A determinação do melhor valor para a constante pode ser feita iterativamente, utilizando alguma forma de comparação; como por exemplo, a *média do quadrado dos erros, MQE*. Desta maneira, seleciona-se aleatoriamente um valor inicial para a constante, a partir do qual previsões são geradas. Comparam-se os valores previstos com os reais, e calcula-se a média do quadrado das diferenças entre os mesmos; o parâmetro que minimiza essa média é utilizado no modelo final. Pacotes computacionais determinam automaticamente o melhor valor de α .

A magnitude da constante α determina a velocidade de resposta do modelo frente a mudanças na demanda (Montgomery *et al.*, 1990). Valores pequenos de α fazem com que o modelo demore a assumir mudanças no comportamento da série; com valores grandes de α , o modelo reage rapidamente.

Os modelos de suavização exponencial simples requerem uma estimativa inicial para \hat{z}_t . Quando dados históricos estão disponíveis, pode-se usar uma média simples das N observações mais recentes como \hat{z}_t ; caso contrário, pode-se utilizar a última observação, ou fazer uma estimativa subjetiva.

2.1.2 Modelo de Holt

O modelo de Holt pode ser utilizado, de maneira satisfatória, em séries temporais com tendência linear. Este modelo emprega duas constantes de suavização, α e β (com valores entre 0 e 1), sendo representado por três equações (Makridakis *et al.*, 1998)

$$L_{t} = \alpha z_{t} + (1 - \alpha)(L_{t-1} + T_{t-1}), \qquad (1)$$

$$T_{t} = \beta(L_{t} - L_{t-1}) + (1 - \beta)T_{t-1}, \qquad (2)$$

$$\hat{z}_{t+k} = L_t + kT_t \,. \tag{3}$$

As equações (1) e (2) fazem uma estimativa do nível e da inclinação da série temporal, respectivamente. Já a equação (3), calcula a previsão da demanda para os próximos k períodos.

Assim como na suavização exponencial simples, o método de Holt requer valores iniciais, neste caso L_0 e T_0 . Uma alternativa para estes cálculos iniciais é igualar L_0 ao último valor observado na série temporal e calcular uma média da declividade nas últimas observações para T_0 . Uma outra forma de cálculo é a regressão linear simples aplicada aos dados da série temporal, onde se obtém o valor da declividade da série temporal e de L_0 em sua origem.

Para exemplificar o método de Holt, suponha que se deseja saber a previsão da demanda para os próximos 3 meses de um produto que possui tendência ascendente. Considere que as vendas nos últimos 12 meses foram 4, 6, 8, 10, 14, 18, 20, 22, 24, 28, 31 e 34 unidades/mês (Winston, 1994). Assim, $L_0 = 34$ representa o último valor observado na série; e,

$$T_0 = \frac{(6-4)+(8-6)+\ldots+(34-31)}{11} = 2,73 \text{ , \'e o valor m\'edio da declividade nos \'ultimos}$$
 12 meses.

Considerando $\alpha = 0.3$ e $\beta = 0.1$, obtêm-se os valores apresentados na Tabela 2. A seguir são apresentados exemplos dos cálculos para o período correspondente ao tempo t=1

$$\begin{split} \hat{z}_{0+1} &= L_0 + kT_0 = 34 + 1(2,73) = 36,73 \; ; \\ e_1 &= z_1 - \hat{z}_1 = 40 - 36,73 = 3,27 \; ; \\ L_1 &= 0,3z_1 + 0,7(L_0 + T_0) = 0,3(40) + 0,7(34 + 2,73) = 37,71 \; ; \\ T_1 &= 0,1(L_1 - L_0) + 0,9T_0 = 0,1(37,71 - 34) + 0,9(2,73) = 2,83 \; ; \\ \hat{z}_{1+1} &= L_1 + kT_1 = 37,71 + 1(2,83) = 40,54 \; . \end{split}$$

TABELA 2. Previsão de demanda pelo método de Holt.

t	Z_t	L_l	T_{t}	\hat{z}_t	e_{t}
1	40	37,71	2,83	36,73	3,27
2	47	42,48	3,02	40,54	6,46
3	50	46,85	3,16	45,5	4,5

Os valores das constantes de suavização no modelo de Holt podem ser determinados de forma semelhante à usada na suavização exponencial simples; ou seja, uma combinação de valores para α e β que minimize a MQE.

2.1.3 Modelos de Winters

Os modelos de Winters descrevem apropriadamente dados de demanda onde se verifica a ocorrência de tendência linear, além de um componente de sazonalidade. Dados de demanda sazonal caracterizam-se pela ocorrência de padrões cíclicos de variação, que se repetem em intervalos relativamente constantes de tempo. Demanda de tipo sazonal caracteriza alguns ramos da indústria alimentícia (refrigerantes e sorvetes), de cosméticos (bronzeadores) e de serviços (intensidade de atendimento de um banco ao longo do dia).

Os modelos de Winters dividem-se em dois grupos: aditivo e multiplicativo. No modelo aditivo, a amplitude da variação sazonal é constante ao longo do tempo; ou seja, a diferença entre o maior e menor valor de demanda dentro das estações permanece relativamente constante no tempo. No modelo multiplicativo, a amplitude da variação sazonal aumenta ou diminui como função do tempo.

2.1.3.1 Modelo Sazonal Multiplicativo

O modelo multiplicativo de Winters é utilizado na modelagem de dados sazonais onde a amplitude do ciclo sazonal varia com o passar do tempo. Sua representação matemática vem dada por (Makridakis *et al.*, 1998)

$$L_{t} = \alpha \frac{Z_{t}}{S_{t-s}} + (1 - \alpha)(L_{t-1} + T_{t-1}), \qquad (4)$$

$$T_{t} = \beta(L_{t} - L_{t-1}) + (1 - \beta)T_{t-1}, \tag{5}$$

$$S_t = \gamma \frac{z_t}{L_t} + (1 - \gamma) S_{t-s}, \tag{6}$$

$$\hat{z}_{t+k} = (L_t + kT_t)S_{t-s+k} \,, \tag{7}$$

onde s é uma estação completa da sazonalidade (por exemplo, s é igual a 12 quando se tem dados mensais e sazonalidade anual); L_t , T_t e S_t representam o nível, a tendência e a sazonalidade da série, respectivamente; \hat{z}_{t+k} é a previsão para k períodos a frente; e, finalmente, γ é a constante de suavização que controla o peso relativo a sazonalidade, variando entre 0 e 1.

A equação (4) difere da equação que trata do nível da série no modelo de Holt, já que o primeiro termo é dividido por um componente sazonal, eliminando assim a flutuação sazonal de z_t . A equação (5) é exatamente igual à equação da tendência no método de Holt. Já a equação (6), faz um ajuste sazonal nas observações z_t .

Como todos os métodos de suavização exponencial, os modelos de Winters necessitam valores iniciais de componentes (neste caso, nível, tendência e sazonalidade) para dar início aos cálculos. Para a estimativa do componente sazonal, necessita-se no mínimo uma estação completa de observações, ou seja, *s* períodos (Makridakis *et al.*, 1998). As estimativas iniciais do nível e da tendência são feitas, então, no período *s* definido para o componente sazonal.

O estimador inicial para o nível da série é dado pela média da primeira estação

$$L_s = \frac{1}{s} (z_1 + z_2 + \dots + z_s). \tag{8}$$

O cálculo da estimativa inicial para a tendência requer duas estações completas (2s)

$$T_{s} = \frac{1}{s} \left(\frac{z_{s+1} - z_{1}}{s} + \frac{z_{s+2} - z_{2}}{s} + \dots + \frac{z_{s+s} - z_{s}}{s} \right). \tag{9}$$

Para o componente sazonal, utilizam-se s estimativas iniciais

$$S_1 = \frac{z_1}{L_s}, \ S_2 = \frac{z_2}{L_s}, ..., \ S_s = \frac{z_s}{L_s}.$$
 (10)

Estimadores diferentes dos apresentados nas equações (8), (9) e (10) estão disponíveis na literatura. Alguns exemplos podem ser encontrados em Winters (1960), Johnson & Montgomery (1974), Hamilton (1994) e Elsayed & Boucher (1994).

A Tabela 3 apresenta um exemplo de previsão de demanda utilizando o modelo multiplicativo de Winters, com $\alpha = 0.822$, $\beta = 0.055$ e $\gamma = 0$. Para tanto, é utilizada uma série temporal sazonal com dados dispostos trimestralmente (Makridakis *et al.*, 1998). Os cálculos iniciais da tabela são apresentados a seguir

$$L_{s} = \frac{1}{4}(z_{1} + z_{2} + \dots + z_{4}) = \frac{1}{4}(362 + 385 + 432 + 341) = 380;$$

$$T_{s} = \frac{1}{4}\left(\frac{z_{5} - z_{1}}{4} + \frac{z_{6} - z_{2}}{4} + \dots + \frac{z_{8} - z_{4}}{4}\right)$$

$$= \frac{1}{4}\left(\frac{382 - 362}{4} + \frac{409 - 385}{4} + \frac{498 - 432}{4} + \frac{387 - 341}{4}\right) = 9,75;$$

$$S_{1} = \frac{z_{1}}{L_{s}} = \frac{362}{380} = 0,953;$$

$$S_{2} = \frac{z_{2}}{L_{s}} = \frac{385}{380} = 1,013;$$

$$S_{3} = \frac{z_{3}}{L_{s}} = \frac{432}{380} = 1,137;$$

$$S_{4} = \frac{z_{4}}{L_{s}} = \frac{341}{380} = 0,897;$$

$$\hat{z}_{4+1} = (L_{4} + kT_{4})S_{1} = (380 + 1 \times 9,75)0,953 = 371,29;$$

$$L_{5} = \alpha \frac{z_{5}}{S_{1}} + (1 - \alpha)(L_{s} + T_{s}) = 0,822 \frac{382}{0,953} + (1 - 0,822)(380 + 9,75) = 398,99;$$

$$T_{5} = \beta(L_{5} - L_{s}) + (1 - \beta)T_{s} = 0,055(382 - 380) + (1 - 0,055)9,75 = 10,26;$$

$$S_5 = \gamma \frac{z_5}{L_5} + (1 - \gamma)S_1 = 0\frac{382}{398,99} + (1 - 0)0,953 = 0,953.$$

TABELA 3. Previsão de demanda pelo modelo multiplicativo de Winters. (Adaptado de Makridakis *et al.*, 1998).

t	\boldsymbol{z}_t	L_{t}	T_{t}	S_{t}	$\hat{\boldsymbol{z}}_t$
1	362	-	-	0,953	-
2	385	-	-	1,013	-
3	432	-	-	1,137	-
4	341	380	9,75	0,897	-
5	382	398,99	10,26	0,953	371,29 (<i>k</i> =1)
6	409	404,68	10,01	1,013	414,64 (<i>k</i> =1)
7	498	433,9	11,07	1,137	471,43 (<i>k</i> =1)
8	387	433,7	10,45	0,897	399,30 (<i>k</i> =1)
9	-	-	-	-	423,11 (<i>k</i> =1)
10	-	-	-	-	460,57 (<i>k</i> =2)

Os valores das constantes de suavização seguem a mesma lógica de determinação sugerida para os outros métodos de suavização exponencial.

2.1.3.2 Modelo Sazonal Aditivo

O modelo aditivo de Winters é utilizado na modelagem de dados sazonais onde a amplitude do ciclo sazonal permanece constante com o passar do tempo. Suas equações matemáticas são (Makridakis *et al.*, 1998)

$$L_{t} = \alpha(z_{t} - S_{t-s}) + (1 - \alpha)(L_{t-1} + T_{t-1}), \tag{11}$$

$$T_{t} = \beta (L_{t} - L_{t-1}) + (1 - \beta)T_{t-1}, \tag{12}$$

$$S_{t} = \gamma(z_{t} - L_{t}) + (1 - \gamma)S_{t-s}, \qquad (13)$$

$$\hat{z}_{t+k} = L_t + kT_t + S_{t-s+k} . {14}$$

A equação da tendência permanece a mesma utilizada para o modelo multiplicativo [ver equação (5)]. Nas demais equações, a única diferença é que o componente sazonal está efetuando operações de soma e subtração, ao invés de multiplicar e dividir.

Os valores iniciais de L_s e T_s são calculados de forma idêntica ao modelo multiplicativo. Já os componentes sazonais são calculados da seguinte forma

$$S_1 = z_1 - L_s$$
, $S_2 = z_2 - L_s$, ..., $S_s = z_s - L_s$.

2.2 Modelos de Decomposição

Os modelos de decomposição estão entre as técnicas mais antigas para a análise de séries temporais (Makridakis *et al.*, 1998). Estes modelos partem do princípio de que uma série temporal pode ser representada por seus componentes separadamente. Assim, a série principal é decomposta em séries para sazonalidade, tendência, média, ciclo e ruído aleatório

$$S\acute{e}rieTemporal = f(S_t, T_t, L_t, C_t, a_t)$$
.

Modelos de decomposição se dividem em aditivo e multiplicativo. No modelo aditivo, como o próprio nome informa, a série temporal é constituída pela soma de seus componentes; ou seja,

$$z_t = S_t + T_t + L_t + C_t + a_t.$$

Já no modelo multiplicativo, a série temporal é constituída pelo produto dos componentes,

$$z_t = S_t \times T_t \times L_t \times C_t \times a_t$$
.

Uma vez feita a decomposição da série temporal, sua previsão para períodos futuros é feita a partir do reagrupamento das previsões individuais dos componentes. Uma vez que o

componente de ruído aleatório não é modelável, seu valor é igualado a zero no modelo aditivo, e um no modelo multiplicativo.

A aplicabilidade destes modelos se deve ao fato que padrões na série podem ser melhor visualizados após a decomposição da mesma.

2.3 Modelos de Box-Jenkins

Os modelos de Box-Jenkins, também conhecidos como *Modelos Autoregressivos Integrados a Média Móvel*, ou simplesmente *ARIMA* (*Autoregressive Integrated Moving Average*), foram propostos por George Box e Gwilym Jenkins no início dos anos 70 (Box *et al.*, 1994).

Os modelos de Box-Jenkins partem da idéia de que os valores de uma série temporal são altamente dependentes, ou seja, cada valor pode ser explicado por valores prévios da série. Os modelos ARIMA representam a classe mais geral de modelos para a análise de séries temporais. Alguns conceitos devem ser analisados para o entendimento dos modelos Box-Jenkins; tais conceitos são apresentados na sequência.

2.3.1 Conceitos Básicos para a Compreensão dos Modelos Box-Jenkins

Modelos Estocásticos e Determinísticos

A representação de fenômenos físicos mostrada numa série temporal pode ser feita através de uma *modelagem matemática*. Nos modelos, valores podem ser agrupados e descritos através de equações matemáticas. Pode-se utilizar modelagem matemática, por exemplo, para prever o valor de variáveis de interesse em qualquer momento no tempo, caso as variáveis sejam dependentes do tempo. Sempre que uma previsão *exata* for possível, os modelos são ditos *determinísticos*. No entanto, muitos fenômenos não são de natureza determinística, devido à incidência aleatória de fatores desconhecidos; nestes casos, a

previsão do valor futuro está sujeita a um cálculo de probabilidade. Modelos matemáticos desenvolvidos para analisar tais sistemas são ditos *estocásticos*.

Um processo estocástico é caracterizado por uma família de variáveis aleatórias que descrevem a evolução de algum fenômeno de interesse. Processos estocásticos que caracterizam os estudos de séries temporais descrevem a evolução *temporal* de um fenômeno de interesse. Neste trabalho, processos estocásticos são designados, de maneira abreviada, por *processos*.

Modelos Estocásticos Estacionários e Não-Estacionários

Uma importante classe de modelos estocásticos utilizados na representação de séries temporais são os *modelos estacionários*. Tais modelos pressupõem um processo sob equilíbrio, onde a família de variáveis se mantém a um nível constante médio (Box *et al.*, 1994). Porém, muitas séries temporais são melhor representadas por modelos não estacionários. Séries estacionárias e não estacionárias vêm representadas graficamente na Figura 3.

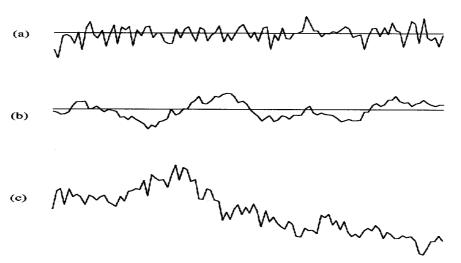


FIGURA 3. Séries temporais. (Fonte: Box & Luceño, 1997).

Os gráficos (a) e (b) na Figura 3 mostram séries temporais exibindo variação estacionária. Tais séries variam de maneira estável no tempo, sobre um valor de média fixo. O gráfico (c) mostra uma série temporal não estacionária, a qual não se desloca no tempo sobre uma média fixa.

A série da Figura 3(a) é uma série de ruído aleatório. Em tais séries, as diferenças entre as observações e a média são estatisticamente independentes, seguindo alguma distribuição de probabilidade (geralmente normal, com média zero e desvio padrão σ_a^2). A propriedade chave em uma série de ruído aleatório é que a ordem na qual as observações ocorrem não informa nada a respeito da série. Assim, valores passados da série não podem ser utilizados na previsão de valores futuros (Box & Luceño, 1997).

A série da Figura 3(b) também é estacionária, mas apresenta ruídos autocorrelacionados. Nesse caso, diferenças entre observações e a média não são estatisticamente independentes entre si. Dependência estatística implica na probabilidade de uma diferença qualquer ser influenciada pela magnitude das demais diferenças na série. Na série da Figura 3(b), diferenças positivas tendem a seguir diferenças positivas e vice-versa.

A autocorrelação difere da correlação pela seguinte razão. A correlação mede o grau de associação entre duas séries temporais distintas. Já a autocorrelação mede a associação entre valores da mesma série, em diferentes períodos defasados de tempo (ver Tabela 4).

Finalmente, a Figura 3(c) ilustra uma variação não estacionária. Essas séries são encontradas com freqüência em aplicações na indústria, bem como em estudos de economia e negócios.

• Modelo de Filtro Linear

Os modelos estocásticos são baseados na idéia (Yule, 1927 apud Box et al., 1994) de que uma série temporal z_t , com valores sucessivos altamente dependentes, pode ser estimada a partir de uma série de ruído aleatório a_t , apropriadamente transformada através de uma função matemática.

O processo de ruído aleatório a_t é transformado no processo z_t por uma função de *filtro linear*. A função de filtro linear faz uma soma ponderada de ruídos aleatórios prévios, isto é

$$z_{t} = \mu + a_{t} + \psi_{1} a_{t-1} + \psi_{2} a_{t-2} + \dots, \tag{15}$$

ou

$$z_t = \mu + \psi(B)a_t$$

onde μ é o nível do processo, B é um *operador de defasagem*, expresso por $B^m a_t = a_{t-m}$, e $\psi(B) = 1 + \psi_1 B + \psi_2 B^2 + ...$ é o operador linear que transforma a_t em z_t (também chamado função de transferência do filtro; Box et al., 1994).

Modelos derivados da equação (15) podem representar tanto séries estacionárias quanto séries não-estacionárias. Se uma sequência de ψ 's é finita, ou infinita e convergente, o processo z_t é estacionário, com média μ . Caso contrário, z_t é não estacionário e μ é apenas um ponto de referência para o nível do processo em algum momento no tempo.

Autocorrelação

Uma estatística importante na análise de séries temporais é o *coeficiente de autocorrelação* ρ . A autocorrelação é usada para descrever a correlação entre dois valores da mesma série temporal, em diferentes períodos de tempo. Assim, um coeficiente de autocorrelação ρ_1 mede a correlação entre dois valores adjacentes na série, e a autocorrelação, neste caso, é dita *autocorrelação de lag* (ou defasagem) 1. De maneira genérica, o coeficiente de autocorrelação ρ_k mede a correlação entre observações distantes k períodos de tempo (ou seja, uma autocorrelação de lag k).

A autocorrelação de lag k é medida pelo coeficiente ρ_k , definido por (Box et al., 1994)

$$\rho_k = \frac{E[(z_t - \mu)(z_{t-k} - \mu)]}{\sqrt{E[(z_t - \mu)^2]E[(z_{t-k} - \mu)^2]}},$$
(16)

$$\rho_k = \frac{E[(z_t - \mu)(z_{t-k} - \mu)]}{\sigma_z^2},\tag{17}$$

onde σ_z^2 é a variância da série temporal.

Uma estimativa do coeficiente de autocorrelação populacional ρ_k nas equações (16) e (17) é dado pelo coeficiente de *autocorrelação amostral*

$$r_{k} = \frac{\sum_{t=k+1}^{n} (z_{t} - \overline{z})(z_{t-k} - \overline{z})}{\sum_{t=1}^{n} (z_{t} - \overline{z})^{2}}, \text{ com } k = 0, 1, 2, ..., n,$$
(18)

onde

$$\overline{z} = \frac{1}{n} \sum_{t=1}^{n} z_t.$$

Na prática, para se obter uma boa estimativa do coeficiente de autocorrelação, deve-se dispor de pelo menos 50 observações da variável z. O número de autocorrelações de *lags* diferentes que se calcula para a análise da série temporal deve ser de n/4, onde n é o número total de observações na série.

A seguir é apresentado o cálculo da autocorrelação de *lag* 1 da série temporal utilizada na Tabela 5. Para tanto, usa-se o desenvolvimento demonstrado na Tabela 4.

Utilizando a equação (18), e os somatórios da Tabela 4, chega-se a

$$r_k = \frac{254,969}{300,493} = 0,849,$$

o que implica em uma forte associação entre os valores da série em questão, para uma defasagem igual a 1.

Similarmente à autocorrelação, a *autocorrelação parcial* também permite analisar o relacionamento entre valores de uma série temporal. Porém, a autocorrelação parcial mede o grau de associação entre z_t e z_{t-k} , quando o efeito de outros lags - 1, 2, 3, ..., (k-1) – são removidos (ver Box *et al.*, 1994). A autocorrelação parcial é representada por ϕ_{kk} .

O coeficiente de autocorrelação parcial ϕ_{kk} é o $k^{\acute{e}simo}$ coeficiente em um processo autoregressivo de ordem k (ver Box et al., 1994).

Uma vez apresentados os conceitos básicos anteriores, passa-se ao detalhamento dos modelos de Box-Jenkins.

t	\boldsymbol{z}_t	\boldsymbol{z}_{t-1}	$(z_t - \overline{z})$	$(z_{t-1}-\overline{z})$	$(z_t - \overline{z})^2$	$(z_t - \overline{z})(z_{t-1} - \overline{z})$
1	0,656	-	0,198	-	0,039	-
2	1,057	0,656	0,599	0,198	0,359	0,119
3	-1,750	1,057	-2,208	0,599	4,874	-1,323
4	-0,489	-1,750	-0,947	-2,208	0,896	2,090
5	-2,861	-0,489	-3,319	-0,947	11,015	3,142
÷	:	:	÷	÷	÷	÷
49	-1,799	-0,937	-2,257	-1,395	5,093	3,148
50	-1,698	-1,799	-2,156	-2,257	4,648	4,865
$\overline{z} =$	0,458			Σ	300,493	254,969

TABELA 4. Desenvolvimento para o cálculo da autocorrelação de *lag* 1 da série utilizada na Tabela 5.

2.3.2 Modelos Autoregressivos

Um modelo estocástico útil na representação de um grande número de séries temporais é o *modelo autoregressivo*. Neste modelo, o valor corrente do processo é expresso como uma combinação linear finita de valores prévios do processo e um ruído aleatório a_t .

Definem-se os valores observados de um processo em espaços de tempo igualmente divididos t, t-1, t-2,... por z_t , z_{t-1} , z_{t-2} , ...

Definem-se também \tilde{z}_t , \tilde{z}_{t-1} , \tilde{z}_{t-2} , ... como sendo desvios da média μ , ou seja,

$$\widetilde{z}_{\scriptscriptstyle t} = z_{\scriptscriptstyle t} - \mu \,,\; \widetilde{z}_{\scriptscriptstyle t-1} = z_{\scriptscriptstyle t-1} - \mu \,,\; \widetilde{z}_{\scriptscriptstyle t-2} = z_{\scriptscriptstyle t-2} - \mu \,,\; \ldots$$

Então, a equação

$$\widetilde{z}_{t} = \phi_{1} \widetilde{z}_{t-1} + \phi_{2} \widetilde{z}_{t-2} + \dots + \phi_{p} \widetilde{z}_{t-p} + a_{t}, \tag{19}$$

representa um processo autoregressivo de ordem p, ou simplesmente AR(p). A razão para o nome autoregressivo é pelo fato de um modelo linear

$$\widetilde{z} = \phi_1 \widetilde{x}_1 + \phi_2 \widetilde{x}_2 + \dots + \phi_p \widetilde{x}_p + a , \qquad (20)$$

relacionando uma variável dependente z a um grupo de variáveis independentes $x_1, x_2, ..., x_p$, e a um termo de erro a, ser geralmente referido como um modelo de regressão. Assim, z é dito regredido em $x_1, x_2, ..., x_p$. Na equação (19), a variável z é regredida em valores prévios da própria variável; por essa razão, o modelo é denominado *auto* regressivo (Box *et al.*, 1994).

Os *coeficientes autoregressivos* ϕ_1 , ϕ_2 , ..., ϕ_p , são parâmetros que descrevem como um valor corrente z_t relaciona-se com valores passados z_{t-1} , z_{t-2} , ..., z_{t-p} . O coeficiente autoregressivo de ordem p pode ser expresso usando a definição do operador B

$$\phi(B) = 1 - \phi_1 B - \phi_2 B^2 - \dots - \phi_p B^p$$
,

simplificando a representação matemática do modelo autoregressivo para

$$\phi(B)\widetilde{z}_{t}=a_{t}$$
.

O modelo AR(p) contém p+2 parâmetros desconhecidos (μ , ϕ_1 , ϕ_2 , ..., ϕ_p , σ_a^2), os quais podem ser estimados a partir dos valores observados na série temporal. σ_a^2 é a variância do processo de ruído aleatório a_t .

Pode-se demonstrar que o modelo autoregressivo é um caso especial do modelo de filtro linear. Substitua \tilde{z}_{t-1} no lado direito da equação (19) pela expressão (Montgomery *et al.*, 1990)

$$\widetilde{z}_{t-1} = \phi_1 \widetilde{z}_{t-2} + \phi_2 \widetilde{z}_{t-3} + \dots + \phi_n \widetilde{z}_{t-n-1} + a_{t-1}. \tag{21}$$

A seguir, repita as substituições para \widetilde{z}_{t-2} , \widetilde{z}_{t-3} , etc., obtendo, assim, uma série infinita de a's. Desta maneira, $\phi(B)\widetilde{z}_t=a_t$ é equivalente a $\widetilde{z}_t=\psi(B)a_t$, ou $\psi(B)=\phi^{-1}(B)$, como queria-se demonstrar.

Processos autoregressivos podem ser estacionários ou não estacionários (Box *et al.*, 1994). A premissa necessária para a estacionariedade é que o operador autoregressivo $\phi(B) = 1 - \phi_1 B - \phi_2 B^2 - \dots - \phi_p B^p$, considerado como sendo um polinômio em *B* de grau *p*, tenha todas as suas raízes $\phi(B) = 0$ maiores que 1, em valores absolutos (ou seja, todas as

raízes devem estar fora do círculo unitário). Esta condição é derivada do fato que a série infinita de ψ_i 's deve convergir para o processo (\tilde{z}_t) ser estacionário.

O processo autoregressivo possui dois importantes casos especiais: os processos de primeira e segunda ordem.

Se p = 1, tem-se um processo autoregressivo de primeira ordem, designado por AR(1) e descrito por

$$\widetilde{z}_{t} = \phi_{1} \widetilde{z}_{t-1} + a_{t}. \tag{22}$$

Este processo também é conhecido como *processo de Markov* [num processo de Markov, para saber-se o valor assumido pela variável de interesse num instante t qualquer, necessita-se somente a informação sobre o valor assumido pela mesma em t-1 (Ross, 1993)]. Para o processo AR(1) ser estacionário, a raiz de $\phi(B) = 1 - \phi_1 = 0$ deve estar fora do círculo unitário. Isto equivale a dizer que $|\phi_1| < 1$, para que a estacionariedade se verifique.

A função de autocorrelação do processo é dada por $\rho_k = \phi_1 \rho_{k-1}$, com k > 0, ou $\rho_k = \phi_1^k$, com $k \ge 0$, já que $\rho_0 = 1$. Assim, a função de autocorrelação extingue-se exponencialmente quando ϕ_1 é positivo. Analogamente, quando ϕ_1 é negativo, a função de autocorrelação extingue-se exponencialmente com alternância de sinal.

Quando p = 2, tem-se um processo autoregressivo de segunda ordem, designado por AR(2) e descrito por

$$\widetilde{z}_{t} = \phi_{1} \widetilde{z}_{t-1} + \phi_{2} \widetilde{z}_{t-2} + a_{t}. \tag{23}$$

Novamente, para o processo ser estacionário, as raízes da equação $\phi(B) = 1 - \phi_1 B - \phi_2 B^2 = 0$ devem estar fora do círculo unitário. Isto implica em parâmetros ϕ_1 e ϕ_2 que satisfaçam as seguintes condições

(i)
$$\phi_2 + \phi_1 < 1$$
,

(ii)
$$\phi_2 - \phi_1 < 1$$
 e

$$(iii) - 1 < \phi_2 < 1$$
.

A função de autocorrelação do processo AR(2) é dada por

$$\rho_k = \phi_1 \rho_{k-1} + \phi_2 \rho_{k-2}$$
, com $k > 0$.

Para k = 1 e 2 tem-se, respectivamente

$$\rho_1 = \frac{\phi_1}{1 - \phi_2}$$
 e (24)

$$\rho_2 = \phi_2 + \frac{\phi_1^2}{1 - \phi_2} \,. \tag{25}$$

As equações (24) e (25) são denominadas equações de Yule – Walker (Box et al., 1994).

A função de autocorrelação de ordem 2 é complexa. Se $\phi_1^2 + 4\phi_2 \ge 0$, a função de autocorrelação é uma mistura de distribuições exponenciais decrescentes. Quando $\phi_1^2 + 4\phi_2 < 0$, a função de autocorrelação extingue-se de maneira senoidal. De uma maneira geral, a função de autocorrelação para um processo estacionário autoregressivo consiste de uma mistura de distribuições exponenciais com ondas senoidais decrescentes (Box *et al.*, 1994).

Um exemplo de modelo autoregressivo é apresentado no exemplo 1 da seção 2.3.7.5.

2.3.3 Modelos de Média-Móvel

Nos modelos de média móvel, \tilde{z}_t , que representa a observação z_t subtraída da média μ , depende linearmente de um número finito q de valores prévios do ruído aleatório a_t . Assim,

$$\widetilde{z}_{t} = a_{t} - \theta_{1} a_{t-1} - \theta_{2} a_{t-2} - \dots - \theta_{n} a_{t-n}$$
 (26)

é chamado um *processo de média móvel (MA) de ordem q*. O nome média móvel pode levar a equívocos de interpretação, já que os pesos $1, -\theta_1, -\theta_2, ..., -\theta_q$ não somam, necessariamente, a unidade nem precisam ser, necessariamente, positivos (Montgomery *et al.*, 1990).

O coeficiente de média móvel θ de ordem q pode ser expresso usando a definição do operador B

$$\theta(B) = 1 - \theta_1 B - \theta_2 B^2 - \dots - \theta_a B^q,$$

simplificando a representação matemática para

$$\widetilde{z}_t = \theta(B)a_t$$
,

o qual contém q+2 parâmetros desconhecidos (μ , θ_1 , θ_2 , ..., θ_q , σ_a^2), estimáveis a partir dos valores observados na série temporal.

Uma vez que a série

$$\psi(B) = \theta(B) = 1 - \theta_1 B - \theta_2 B^2 - \dots - \theta_n B^q$$

é finita, nenhuma restrição é necessária sobre os parâmetros do processo de média móvel para assegurar estacionariedade.

A função de autocorrelação de um processo MA(q) é

$$\rho_{k} = \frac{-\theta_{k} + \theta_{1}\theta_{k+1} + ... + \theta_{q-k}\theta_{q}}{1 + \theta_{1}^{2} + ... + \theta_{q}^{2}}, \text{ com } k = 1, 2, ..., q, e$$

 $\rho_k = 0$ quando k > q.

Para o caso particular de um processo MA(1)

$$\widetilde{z}_{t} = a_{t} - \theta_{1} a_{t-1}, \tag{27}$$

ou

$$\widetilde{z}_{t} = (1 - \theta_{1}B)a_{t}, \tag{28}$$

com o processo sendo estacionário para qualquer valor de θ_1 .

A função de autocorrelação do processo MA(1) é dada por

$$\rho_k = \frac{-\theta_1}{1+\theta_1^2}$$
, quando $k = 1$, e $\rho_k = 0$, quando $k \ge 2$.

Outro caso particular de interesse é o processo de média móvel MA(2), representado por

$$\widetilde{z}_{t} = a_{t} - \theta_{1} a_{t-1} - \theta_{2} a_{t-2}, \tag{29}$$

o qual é estacionário para qualquer valor de θ_1 e θ_2 .

A função de autocorrelação do processo MA(2) é dada por

$$\rho_1 = \frac{-\theta_1(1-\theta_2)}{1+\theta_1^2+\theta_2^2},$$

$$\rho_2 = \frac{-\theta_2}{1 + \theta_1^2 + \theta_2^2},$$

$$\rho_k = 0$$
, para $k \ge 3$.

Um exemplo modelo de média móvel é apresentado no exemplo 2 da seção 2.3.7.5.

Invertibilidade de um processo de média móvel

Processos autoregressivos e de média móvel apresentam uma propriedade de interesse, denominada *invertibilidade*. Considere, por exemplo, um processo MA(1), representado pela equação (28), reescrito isolando a_t ,

$$a_t = (1 - \theta_1 B)^{-1} \widetilde{z}_t. \tag{30}$$

Se $|\theta_1|$ < 1, a equação (30) pode ser escrita como

$$a_t = (\sum_{j=0}^{\infty} \theta_1^j B^j) \widetilde{z}_t, \text{ ou}$$

$$a_t = (1 + \theta_1 B^1 + \theta_1^2 B^2 + \ldots) \widetilde{z}_t.$$
(31)

Isto se deve ao fato de que a expressão (Thomas, Jr. & Finney, 1992)

$$\frac{1}{(1-x)}$$
,

para casos onde |x| < 1, pode ser representada por uma série infinita de forma

$$1 + x + x^2 + x^3 + ... + x^n + ...$$

Assim, a equação (31) representa um processo autoregressivo de ordem infinita, com pesos $\phi_j = -\theta_1^j$. Então, o processo MA(1) é *invertido* para se obter um processo AR(∞). A premissa $|\phi_1|<1$ é chamada de condição de invertibilidade para um processo MA(1) (Montgomery *et al.*, 1990).

Em geral, para um processo MA(q) ser invertido em um $AR(\infty)$, as raízes do polinômio $\theta(B) = 1 - \theta_1 B - \theta_2 B^2 - \dots - \theta_q B^q = 0$ devem estar fora do círculo unitário. No processo MA(2), em particular, essa condição implica em

$$\phi_2 + \phi_1 < 1$$
,

$$\phi_2 - \phi_1 < 1 \text{ e}$$

$$-1 < \phi_2 < 1$$
.

As condições de invertibilidade para os coeficientes em um processo MA(q) são idênticas às condições de estacionariedade para um processo AR(p). Assim, (i) o processo MA(q) é estacionário para todos os valores de θ , mas é inversível apenas se as raízes da equação $\theta(B) = 0$ resultarem fora do círculo unitário; e, (ii) o processo AR(p) é estacionário apenas se as raízes de $\phi(B) = 0$ resultarem fora do círculo unitário, mas é inversível para todos os valores de ϕ (Montgomery $et\ al.$, 1990).

2.3.4 Modelos Mistos Autoregressivos - Média Móvel

Algumas vezes, séries temporais são melhor modeladas com a inclusão de termos autoregressivos e de média móvel. O resultado é um modelo misto autoregressivo - média móvel de ordem (p, q)

$$\widetilde{z}_{t} = \phi_{1} \widetilde{z}_{t-1} + \dots + \phi_{p} \widetilde{z}_{t-p} + a_{t} - \theta_{1} a_{t-1} - \dots - \theta_{q} a_{t-q},$$
(32)

ou, utilizando a notação do operador de defasagem B e rearranjando os termos na equação (32)

$$\phi(B)\widetilde{z}_t = \theta(B)a_t,$$

o qual pode ser abreviado para ARMA (p, q).

O modelo possui p+q+2 parâmetros desconhecidos (μ , ϕ_1 , ..., ϕ_p ; θ_1 , ..., θ_q , σ_a^2), que podem ser estimados a partir dos valores observados na série temporal. Na prática, os valores de p e q são geralmente menores que 2 para séries temporais estacionárias (Box et al., 1994).

As condições de estacionariedade e invertibilidade estabelecidas para os processos AR(p) e MA(q) se mantém nos modelos ARMA (p, q). Ou seja, um modelo ARMA (p, q) é estacionário se as raízes do polinômio $\phi(B) = 0$ estiverem fora do círculo unitário, e inversível se as raízes de $\theta(B) = 0$ resultarem fora do círculo unitário.

Um caso especial de interesse prático dos modelos mistos autoregressivo – média móvel, é o processo ARMA (1, 1), dado por

$$\widetilde{z}_t - \phi_1 \widetilde{z}_{t-1} = a_t - \theta_1 a_{t-1},$$

ou

$$(1 - \phi_1 B)\widetilde{z}_t = (1 - \theta_1 B)a_t.$$

Este processo é estacionário se $|\phi_1| < 1$ e inversível se $|\theta_1| < 1$.

A função de autocorrelação de um processo ARMA (1, 1) é

$$\rho_1 = \frac{(1 - \phi_1 \theta_1)(\phi_1 - \theta_1)}{1 + \theta_1^2 - 2\phi_1 \theta_1}, e$$

$$\rho_k = \phi_1 \rho_{k-1}$$
 quando $k \ge 2$.

Como pode-se ver, o componente de média móvel faz parte apenas da determinação de ρ_1 . Consequentemente, a função de autocorrelação apresenta um pequeno decréscimo entre ρ_0 e ρ_1 , decrescendo exponencialmente a partir de ρ_1 , em contraste com o modelo AR(1), que decresce exponencialmente a partir de ρ_0 . ρ_1 é positivo sempre que ϕ_1 for maior que θ_1 , e negativo em caso contrário.

2.3.5 Modelos Não Estacionários

Muitas séries temporais não possuem uma média constante. Isto significa que, em nenhum dado intervalo de tempo, as observações da série se comportam como as observações de um intervalo de tempo distinto. Tais séries são chamadas de *não estacionárias na média*. Da mesma forma, é possível uma série temporal exibir *não estacionariedade na média e na*

declividade. Um exemplo de série não estacionária na média vem apresentado a Figura 4; um exemplo de série não estacionária na média e na declividade vem apresentado na Figura 5.

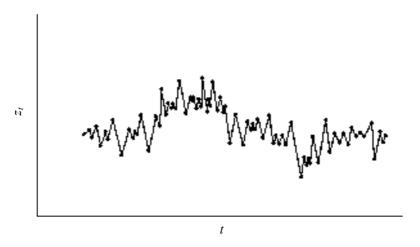


FIGURA 4. Série temporal não estacionária na média. (Fonte: Montgomery et al., 1990).

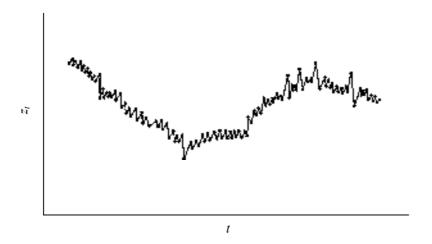


FIGURA 5. Série temporal não estacionária na média e na declividade. (Fonte: Montgomery *et al.*, 1990).

Séries temporais não estacionárias podem exibir, independente da média local (ou média e declividade locais), um comportamento geral homogêneo, com a ocorrência de tendências que se repetem.

Séries não estacionárias podem geralmente ser representadas por um *operador* autoregressivo generalizado $\varphi(B)$, no qual uma ou mais raízes do polinômio $\varphi(B)$ são iguais a 1 em módulo. Em particular, se existirem d raízes unitárias, o operador $\varphi(B)$ assumirá a forma abaixo (Box *et al.*, 1994)

$$\varphi(B) = \phi(B)(1-B)^d, \tag{33}$$

onde $\phi(B)$ é um operador estacionário. Em contrapartida, um modelo que apresenta comportamento homogêneo não estacionário apresenta a seguinte forma

$$\varphi(B)z_{t} = \phi(B)(1-B)^{d} z_{t} = \theta(B)a_{t},$$

ou

$$\phi(B)w_t = \theta(B)a_t, \tag{34}$$

onde

$$w_{t} = \nabla^{d} z_{t} = z_{t} - z_{t-d} . {35}$$

Assim, um comportamento homogêneo não estacionário pode ser representado por um processo estacionário, com d níveis de diferenciação. Na prática, d pode ser 0, 1, ou, no máximo, 2.

Uma boa representação do efeito da diferenciação sobre uma série temporal não estacionária vem dada pela Figura 6.

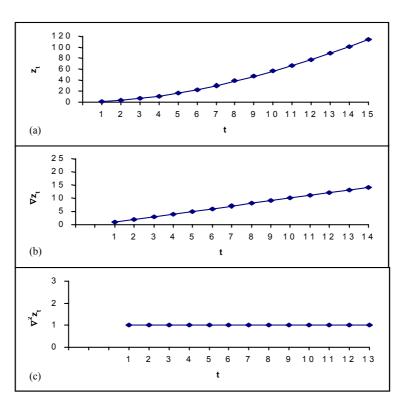


FIGURA 6. Redução da não estacionariedade de uma série temporal após sucessivas diferenciações. (Adaptado de Montgomery *et al.*, 1990).

A série temporal da Figura 6(a) exibe comportamento não estacionário na média e na declividade. Após a primeira diferenciação $(z_t - z_{t-1})$, mostrada na Figura 6(b), a série passa a apresentar não estacionariedade apenas na média. Após a segunda diferenciação $[(z_t - z_{t-1}) - (z_{t-1} - z_{t-2}) = z_t - 2 z_{t-1} + z_{t-2}]$, com o resultado apresentado na Figura 6(c), a série torna-se estacionária.

A série representada na Figura 6(a) é um exemplo de série homogeneamente não estacionária: após aplicarem-se diferenciações, esta torna-se estacionária.

O processo definido pelas equações (34) e (35) produz um eficiente modelo para descrever séries temporais estacionárias e não estacionárias. Esse modelo é chamado de processo autoregressivo integrado a média móvel (ARIMA) de ordem (p, d, q), onde p corresponde ao componente autoregressivo, d ao número de diferenciações e q ao componente de média móvel. O processo é representado pela equação (Box $et\ al.$, 1994)

$$w_{t} = \phi_{1} w_{t-1} + \dots + \phi_{p} w_{t-p} + a_{t} - \theta_{1} a_{t-1} - \dots - \theta_{q} a_{t-q},$$
(36)

com $w_t = \nabla^d z_t$. Quando d = 0, substituindo-se w_t por $z_t - \mu$ no modelo da equação (36), obtém-se o modelo misto estacionário [equação (32)].

A palavra "integrado" no modelo ARIMA tem o sentido de "somado", já que a equação (35) pode ser escrita por

$$z_t = S^d w_t,$$

onde $S = \nabla^{-1} = (1 - B)^{-1}$ é o *operador de soma*, definido por

$$Sw_t = \sum_{i=0}^{\infty} w_{t-j} = w_t + w_{t-1} + w_{t-2} + \dots$$

Assim, o processo geral autoregressivo integrado a média móvel ARIMA pode ser gerado somando-se ou "integrando-se" o processo estacionário ARMA w_t , d vezes.

A seguir, são apresentados alguns casos especiais do modelo ARIMA (Box *et al.*, 1994):

• Modelo ARIMA (0, 1, 1):

$$\nabla z_t = a_t - \theta_1 a_{t-1} = (1 - \theta_1 B) a_t,$$

onde p=0, d=1, q=1, $\phi(B)=1$, $\theta(B)=1$ - θ_1B . Este modelo pode ser descrito abreviadamente por IMA (1,1) (Montgomery *et al.*, 1990), uma vez que não possui componente autoregressivo.

• Modelo ARIMA (0, 2, 2):

$$\nabla^2 z_t = a_t - \theta_1 a_{t-1} - \theta_2 a_{t-2} = (1 - \theta_1 B - \theta_2 B^2) a_t,$$

onde p=0, d=2, q=2, $\phi(B)=1$, $\theta(B)=1$ - θ_1B - θ_2B^2 . Uma outra forma de descrever este modelo é IMA (2,2).

• Modelo ARIMA (1, 1, 1):

$$\nabla z_{t} - \phi_{1} \nabla z_{t-1} = a_{t} - \theta_{1} a_{t-1}$$
, ou

$$(1 - \phi_1 B) \nabla z_t = (1 - \theta_1 B) a_t,$$

onde
$$p = 1$$
, $d = 1$, $q = 1$, $\phi(B) = 1 - \phi_1 B$, $\theta(B) = 1 - \theta_1 B$.

2.3.6 Modelos Sazonais

Grande parte das séries temporais, principalmente na indústria, apresentam variações sazonais (Montgomery *et al.*, 1990). Isto ocorre quando a série exibe uma característica periódica que se repete a cada *s* intervalos de tempo. Por exemplo, em séries compostas por observações mensais e sazonalidade anual, *s* é igual a 12.

Define-se $\nabla_s = (1 - B^s)$ como sendo o operador de diferença sazonal. Assim,

$$\nabla_{s} z_{t} = (1 - B^{s}) z_{t} = z_{t} - z_{t-s}$$

é a primeira diferenciação sazonal. Em geral, D diferenciações sazonais podem ser requeridas para produzir uma série estacionária. Neste caso, o operador de diferenciação sazonal de ordem D é $\nabla_s^D = (1 - B^s)^D$. Assim, a forma geral do modelo sazonal autoregressivo integrado a média móvel de ordem (P, D, Q) é (Box *et al.*, 1994)

$$\Phi(B^s)\nabla_s^D z_t = \Theta(B^s)\alpha_t, \tag{37}$$

onde $\Phi(B^s)$ e $\Theta(B^s)$ são polinômios em B^s de graus P e Q, respectivamente, que satisfazem as condições de estacionariedade e invertibilidade. A representação da ordem (P, D, Q) é feita em letras maiúsculas, para diferenciá-la da representação feita nos modelos não sazonais.

No modelo da equação (37), os componentes de erro α estão geralmente correlacionados. Assim, α_t estaria relacionado com α_{t-1} , α_{t-2} , etc. Para tratar tal relacionamento, introduz-se um segundo modelo,

$$\phi(B)\nabla^d\alpha_t = \theta(B)a_t, \tag{38}$$

onde a_t é um processo de ruído aleatório. $\phi(B)$ e $\theta(B)$ são polinômios em B de graus p e q, respectivamente, que satisfazem as condições de estacionariedade e invertibilidade.

Substituindo-se a equação (37) na equação (38), obtém-se um modelo multiplicativo geral,

$$\phi_{\scriptscriptstyle D}(B)\Phi_{\scriptscriptstyle P}(B^{\scriptscriptstyle S})\nabla^{\scriptscriptstyle d}\nabla^{\scriptscriptstyle D}_{\scriptscriptstyle S}z_{\scriptscriptstyle t}=\theta_{\scriptscriptstyle Q}(B)\Theta_{\scriptscriptstyle O}(B^{\scriptscriptstyle S})a_{\scriptscriptstyle t},$$

chamado de processo multiplicativo de ordem $(p, d, q) \times (P, D, Q)_s$.

2.3.7 Modelagem da Série Temporal

Um procedimento iterativo em três etapas pode ser utilizado na construção de modelos ARIMA (Montgomery *et al.*, 1990). Primeiro, o modelo ARIMA é identificado através da análise dos dados históricos. A seguir, os parâmetros desconhecidos do modelo são estimados. Finalmente, verifica-se o modelo quanto à sua adequação aos dados. Alguns exemplos de modelagem são apresentados na seção 2.3.7.5.

2.3.7.1 Identificação do Modelo

A identificação de um modelo ARIMA é feita através da análise dos dados que compõem a série temporal. Geralmente, necessita-se um mínimo de 50 observações para identificar-se satisfatoriamente o modelo que melhor descreve a série temporal. As principais ferramentas usadas no processo de identificação do modelo são a função de autocorrelação (FAC) e a função de autocorrelação parcial (FACP).

A escolha do modelo mais apropriado para descrever uma série temporal não é uma tarefa trivial, dado que existe uma grande variedade de modelos ARIMA a serem considerados como candidatos. Na prática, a identificação do melhor modelo pode ser auxiliada pela sequência de passos abaixo (Makridakis *et al.*, 1998):

- Através do gráfico da série temporal, analisa-se seu comportamento no tempo. Em algumas situações, é necessário fazer transformações nos dados (por exemplo, uma transformação logarítmica), com a finalidade de estabilizar a variância da série em estudo.
- 2. Uma vez estabilizada a variância, caso tal procedimento seja necessário, verificase a estacionariedade da série. Este procedimento é feito em duas etapas: análise da série temporal e dos gráficos das FAC e FACP. Quando a série exibe dados em torno de uma média constante e os gráficos das FAC e das FACP apresentam autocorrelações que tendem a zero rapidamente, tem-se a indicação de que a série é estacionária. Se algum destes requisitos não for observado, a série é, possivelmente, do tipo não estacionária.
- 3. Séries não estacionárias devem ser estabilizadas através de diferenciação. Para séries não sazonais, faz-se a diferenciação das observações (z'_t = z_t z_{t-1}); para séries sazonais, faz-se a diferenciação sazonal das observações (z'_t = z_t z_{t-s}), que leva em consideração o intervalo sazonal s. Persistindo a não estacionaridade, nova diferenciação é necessária. Geralmente, a série torna-se estacionária após, no máximo, duas diferenciações.
- 4. Uma vez a série estando estacionária, os valores de D e d são conhecidos. Resta determinar os componentes normais, p e q, e os componentes sazonais, P e Q.
 Se a FAC extingue-se rapidamente e a FACP trunca abruptamente após o lésimo lag, então p = l. Da mesma maneira, para séries sazonais, o valor de P será igual ao

número de *lags* significativos múltiplos de *s* na FACP. Entendem-se como *lags* significativos aqueles que ultrapassarem os limites de $\pm 2S(r_k)$ para a FAC, e $\pm 2S(\hat{\phi}_{kk})$ para a FACP, onde

$$S(r_k) \approx n^{-1/2} \left[1 + 2(r_1^2 + r_2^2 + \dots + r_q^2) \right]^{1/2}, \tag{39}$$

$$S(\hat{\phi}_{kk}) \approx n^{-1/2},\tag{40}$$

e N é o número de observações da série.

Se a FACP extingue-se rapidamente, e a FAC trunca abruptamente após o $l^{\acute{e}simo}$ lag, então q=l. Para modelos sazonais, o valor de Q será igual ao número de lags significativos múltiplos de s na FAC.

Quando ambas as FAC e FACP extinguem-se rapidamente, um modelo misto pode ser necessário. Tais modelos são de difícil identificação, devendo-se usar um processo por tentativas que inicie testando valores baixos de P, Q, p e q.

2.3.7.2 Estimativa dos Parâmetros do Modelo

Uma vez identificado o modelo, seus parâmetros devem ser estimados. O método dos mínimos quadrados pode ser usado na identificação dos parâmetros de modelos ARIMA (Makridakis *et al.*, 1998). Todavia, para os componentes MA, não existe uma fórmula simples para determinação das estimativas dos parâmetros.

Um outro método frequentemente utilizado na estimação de parâmetros é o da máxima verossimilhança. Como o próprio nome informa, o estimador será o valor de parâmetro que maximiza a função de verossimilhança, definida a seguir. Seja Z uma variável aleatória com distribuição de probabilidade $f(z,\theta)$, onde θ é um parâmetro desconhecido a ser estimado. Sejam $z_1, z_2, ..., z_n$ valores observados numa amostra aleatória de tamanho n. Então, a função de verossimilhança da amostra é (Montgomery & Runger, 1994)

$$L(\theta) = f(z_1, \theta) \times f(z_2, \theta) \times ... \times f(z_n, \theta)$$

onde o estimador de máxima verossimilhança de θ é o valor de θ que maximiza a função de verossimilhança $L(\theta)$. Tal estimador é usualmente determinado diferenciando-se $L(\theta)$, igualando o resultado a zero e resolvendo a expressão resultante para θ .

2.3.7.3 Verificação do Modelo

Uma vez obtido um modelo ajustado para a série temporal, deve-se determinar sua adequação e necessidade de melhoria. Um método lógico para verificação do modelo utiliza o cálculo dos resíduos ($e_t = z_t - \hat{z}_t$). Deve-se estimar e examinar a função de autocorrelação dos resíduos (Montgomery *et al.*, 1990). Se o modelo obtido for apropriado, a FAC da amostra dos resíduos $r_e(k)$ não deve apresentar *lags* significativos para nenhum valor de k, neste caso definidos como sendo os maiores que $n^{-1/2}$. Quando este for o caso, os valores observados na série temporal z_t foram transformados em um processo de ruído aleatório e_t .

Uma outra forma de verificação da significância são os testes de Portmanteau. Estes testes não consideram os valores de $r_e(k)$ individualmente, mas o conjunto dos k primeiros $r_e(k)$'s. Os testes de Portmanteau seguem aproximadamente uma distribuição Qui-quadrado (χ^2), e testam a hipótese de um conjunto de resíduos ser significativo. Sua representação matemática é dada por

$$Q = n \sum_{k=1}^{h} r_e(k)^2 ,$$

onde n é o número de observações na série temporal e $h \approx 20$ (Makridakis et al., 1998).

Os testes de Portmanteau, no geral, devem ser utilizados apenas como um auxílio, uma vez que não apresentam muita precisão.

2.3.7.4 Forecasting

Uma vez determinado o melhor modelo para a série temporal em estudo, pode-se usálo para gerar previsões de observações futuras. Partindo-se do período atual t, e supondo que se deseja prever a série em um período futuro, \hat{z}_{t+k} representa a previsão para um período t+kfeita em t.

A previsão para o período t+k é normalmente construída a partir de sucessivas previsões para os períodos t+1, t+2, ..., t+k-1 (Montgomery et al., 1990). Neste procedimento, o valor de z_{t+j} , o qual não se conhece no tempo t, é substituído pela sua previsão \hat{z}_{t+j} . O valor de a_{t+j} , o qual também não se conhece no tempo t, é substituído por zero, e $a_{t-j} = z_{t-j} - \hat{z}_{t-j}$. No início do processo de *forecasting*, deve-se assumir que $a_{t-j} = 0$ para $t-j \leq 0$.

2.3.7.5 Exemplos de Construção de Modelos ARIMA

A seguir, são apresentados 3 exemplos para ilustrar as etapas de construção dos modelos ARIMA.

• Exemplo 1

Considere a série temporal com dados apresentados na Tabela 5 e representada graficamente na Figura 7. A série foi originalmente apresentada em Morettin & Toloi (1987).

T	Z_t	t	\boldsymbol{z}_t	t	\boldsymbol{z}_t	t	\boldsymbol{z}_t	t	\boldsymbol{z}_t
1	0,656	11	-0,731	21	-2,092	31	3,892	41	1,958
2	1,057	12	-0,549	22	-1,993	32	4,29	42	1,883
3	-1,75	13	-1,801	23	-1,187	33	3,746	43	0,344
4	-0,489	14	-0,538	24	1,394	34	3,723	44	-0,708
5	-2,861	15	-0,292	25	3,098	35	1,111	45	-1,852
6	-2,227	16	-0,444	26	4,853	36	3,48	46	-2,318
7	-2,014	17	1,648	27	4,649	37	2,144	47	-2,3
8	-3,773	18	2,183	28	4,821	38	1,252	48	-0,937
9	-3,333	19	-0,253	29	4,441	39	-0,006	49	-1,799
10	-0,626	20	-1,069	30	5,496	40	0,412	50	-1,698

TABELA 5. Série temporal obtida em Morettin & Toloi (1987).

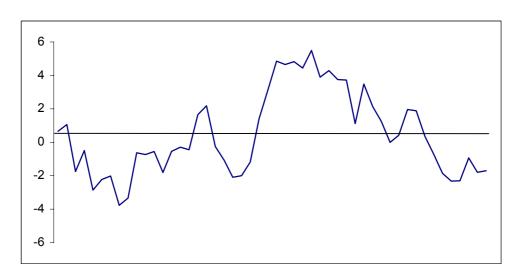


FIGURA 7. Gráfico e linha de média da série temporal apresentada na Tabela 5.

O gráfico da Figura 7 mostra que a série temporal varia em torno da sua média, podendo ser caracterizada como estacionária. Porém, a estacionariedade deve ser comprovada através da análise das autocorrelações, conforme definido na equação (18). Os gráficos da FAC e FACP são mostrados na Figura 8.

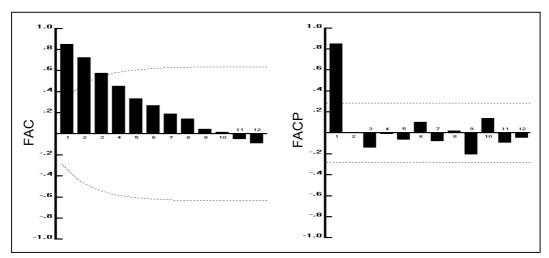


FIGURA 8. FAC e FACP da série temporal representada na Figura 7.

Os gráficos das FAC e FACP confirmam a estacionariedade da série, uma vez que seus valores tendem a zero rapidamente. As linhas horizontais traçadas nos gráficos determinam os limites de significância para as autocorrelações, conforme definido nas equações (39) e (40).

Com a FAC extinguindo-se rapidamente de maneira exponencial, e a FACP contendo apenas um *lag* significativo, tem-se a sugestão de um modelo AR (1). Assim, usando-se a equação (22), temos

$$\widetilde{z}_{t} = \phi_{1}\widetilde{z}_{t-1} + a_{t}$$
,

O parâmetro ϕ_1 é obtido através de regressão, sendo dado por $\phi_1=0.8686$; o modelo resultante é, então

$$\tilde{z}_{t} = 0.8686 \tilde{z}_{t-1} + a_{t}$$

o qual resulta na FAC para os resíduos mostrada na Figura 9.

Uma vez a FAC dos resíduos não possui *lags* significativos, o modelo estimado é considerado adequado. Desta forma, o modelo obtido pode ser utilizado para gerar previsões futuras confiáveis.

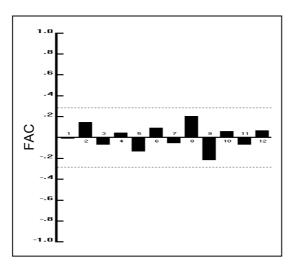


FIGURA 9. FAC dos resíduos da série representada na Figura 7.

Exemplo 2

Considere a série temporal com dados apresentados na Tabela 6 e representada graficamente na Figura 10. A série foi originalmente apresentada em Fuller (1996).

 Z_t Z_t Z_t \boldsymbol{Z}_t \boldsymbol{z}_t Z_t Z_t \boldsymbol{z}_t Z_t Z_t 1,432 11 -3,361 21 -1,008 31 1,675 41 -1,845 -1,311 61 -1,412 71 2,316 81 -2,569 0,427 -0,343 12 -0,912 22 -1,589 32 0,933 42 0,281 52 -0,105 62 -1,525 72 0,258 82 -0,524 92 0,061 -1,759 13 1,594 23 0,289 0,284 43 -0,136 53 0,313 -0,017 73 -1,645 83 0,044 93 0,12 33 63 -2,537 -0,992 -0,89 -1,552 94 14 1,618 24 -0,58 34 0,568 44 54 64 -0,525 74 84 -0,088 1,46 -0,493 -0,295 -0,213 5 15 -1,26 25 1,213 35 0,515 45 0,321 55 -1,778 65 -2,689 75 85 -1,333 95 1,176 0,689 16 0,288 26 36 -0,436 46 2,621 56 -0,202 66 -0,211 76 2,607 86 -1,977 96 -0,888 -0,633 17 0,858 27 0,846 37 0,567 47 2,804 57 0,45 67 2,145 77 1,572 87 0,12 97 -0,53 0,787 -1,752 0,079 78 28 38 -0,127 1,558 98 -0,662 18 1,04 48 2,174 58 68 -0,261 88 -2,757 0,904 -0,229 19 -0,96 29 0,815 39 0,064 49 1,897 59 -0,463 69 -0,452 79 -0,686 89 99 -1,452 10 -0,851 20 1,738 30 2,566 40 -1,051 50 -0,781 60 0,344 70 1,267 80 -2,079 90 -1,437 100 0,158

TABELA 6. Série temporal obtida em Fuller (1996).

FIGURA 10. Gráfico e linha de média da série temporal apresentada na Tabela 6.

O gráfico da Figura 10, da mesma forma que o exemplo 1, mostra que a série temporal varia em torno da sua média, o que permite caracterizá-la como sendo estacionária. Novamente, a estacionariedade deve ser comprovada através da análise das autocorrelações. Os gráficos da FAC e FACP são mostrados na Figura 11.

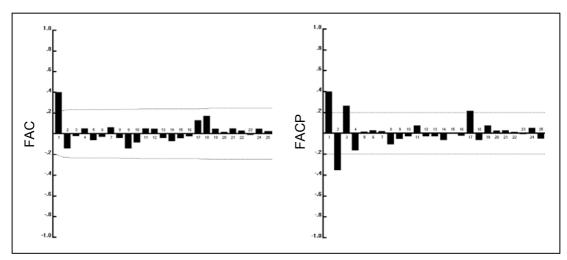


FIGURA 11. FAC e FACP da série temporal representada na Figura 10.

A estacionariedade é confirmada pelos gráficos das FAC e FACP, já que seus valores tendem a zero rapidamente. Com a FACP extinguindo-se rapidamente e a FAC contendo apenas um *lag* significativo, tem-se a sugestão de um modelo MA (1). Assim, usando-se a equação (27), temos

$$\widetilde{z}_{t} = a_{t} - \theta_{1} a_{t-1}$$

A partir do método da máxima verossimilhança, obtém-se uma estimativa para o parâmetro do modelo, $\theta_1 = -0.7318$, o que resulta na seguinte expressão

$$\widetilde{z}_{t} = a_{t} + 0.7318a_{t-1}$$

o qual resulta na FAC dos resíduos mostrada na Figura 12.

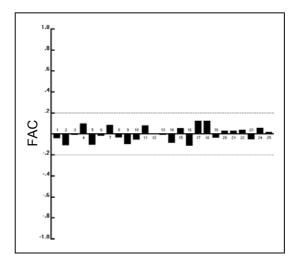


FIGURA 12. FAC dos resíduos da série representada na Figura 10.

A FAC dos resíduos não possui *lags* significativos Assim, o modelo estimado é considerado adequado.

Exemplo 3

Considere a série temporal com dados apresentados na Tabela 7 e representada graficamente na Figura 13. A série foi originalmente apresentada em Makridakis *et al.* (1998) e representa o número de usuários conectados a um servidor da internet durante um período de 100 minutos.

TABELA 7. Usuários conectados a um servidor da internet durante um período de 100 m	nutos
(Makridakis et al., 1998).	

t	Z_t	t	Z_t																
1	88	11	91	21	147	31	140	41	142	51	172	61	112	71	89	81	121	91	193
2	84	12	99	22	149	32	134	42	150	52	172	62	104	72	88	82	135	92	204
3	85	13	104	23	143	33	131	43	159	53	174	63	102	73	85	83	145	93	208
4	85	14	112	24	132	34	131	44	167	54	174	64	99	74	86	84	149	94	210
5	84	15	126	25	131	35	129	45	170	55	169	65	99	75	89	85	156	95	215
6	85	16	138	26	139	36	126	46	171	56	165	66	95	76	91	86	165	96	222
7	83	17	146	27	147	37	126	47	172	57	156	67	88	77	91	87	171	97	228
8	85	18	151	28	150	38	132	48	172	58	142	68	84	78	94	88	175	98	226
9	88	19	150	29	148	39	137	49	174	59	131	69	84	79	101	89	177	99	222
10	89	20	148	30	145	40	140	50	175	60	121	70	87	80	110	90	182	100	220

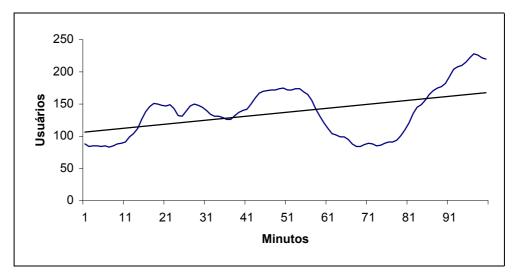


FIGURA 13. Gráfico e linha de tendência da série temporal apresentada na Tabela 7.

Uma análise no gráfico da série temporal mostra que a mesma é não estacionária, possuindo uma tendência ascendente. Porém, a não estacionariedade deve ser comprovada através da análise das autocorrelações (Figura 14).

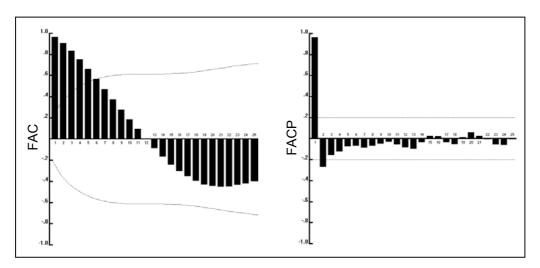


FIGURA 14. FAC e FACP da série temporal representada na Figura 13.

O gráfico da FAC confirma a não estacionariedade da série, uma vez que seus valores não tendem a zero rapidamente. Assim, é necessário fazer a diferenciação da série temporal, a fim de torná-la estacionária. O gráfico da primeira diferenciação ($z_t - z_{t-1}$), está representado na Figura 15.

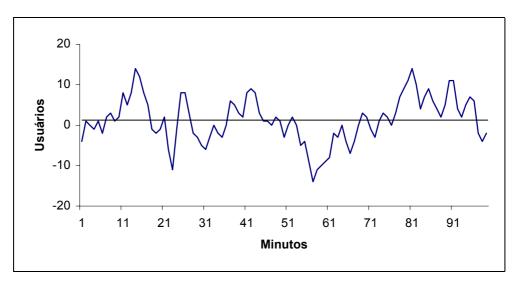


FIGURA 15. Gráfico e linha de média da série temporal apresentada na Tabela 7, após a primeira diferenciação.

A série parece tornar-se estacionária após a primeira diferenciação, variando aleatoriamente em torno de sua média. Esta análise preliminar deve ser validada através do estudo dos gráficos das FAC e FACP, apresentados na Figura 16.

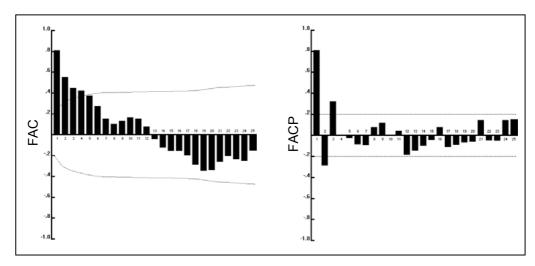


FIGURA 16. FAC e FACP da série temporal representada na Figura 15.

O gráfico da FAC extingue-se rapidamente, combinando padrões exponenciais e senoidais; já o gráfico da FACP exibe 3 *lags* significativos. Isto sugere um modelo ARIMA (3,1,0), o qual possui 3 parâmetros autoregressivos e uma diferenciação. Assim, usando-se a equação (36), temos

$$W_{t} = \phi_{1}W_{t-1} + \phi_{2}W_{t-2} + \phi_{3}W_{t-3} + a_{t}$$
.

Observe que os componentes de média móvel da equação (36) não estão presentes no modelo acima.

Como $w_t = z_t - z_{t-d}$ e d=1, o modelo pode ser expresso por

$$z_{t} - z_{t-1} = \phi_{1}(z_{t-1} - z_{t-2}) + \phi_{2}(z_{t-2} - z_{t-3}) + \phi_{3}(z_{t-3} - z_{t-4}) + a_{t}.$$

A partir de regressão, estimam-se os parâmetros do modelo: $\phi_1=1,1563$, $\phi_2=-0,6665$ e $\phi_3=0,3346$; o modelo resultante é dado por

$$z_{t} - z_{t-1} = 1,1563(z_{t-1} - z_{t-2}) - 0,6665(z_{t-2} - z_{t-3}) + 0,3346(z_{t-3} - z_{t-4}) + a_{t}$$

Rearranjando os termos, chega-se ao modelo final

$$z_{t} = 2,1563z_{t-1} - 1,8228z_{t-2} + 1,0011z_{t-3} - 0,3346z_{t-4} + a_{t}$$

o qual resulta na FAC dos resíduos, mostrada na Figura 17.

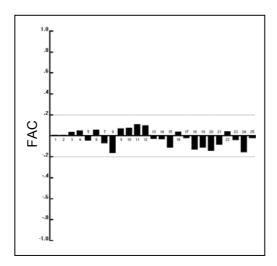


FIGURA 17. FAC dos resíduos da série representada na Figura 15.

Observe que a FAC dos resíduos na Figura 17 não possui *lags* significativos. O modelo obtido para a série temporal na Tabela 7 pode ser, assim, considerado adequado.

2.3.8 Variações dos Modelos de Box-Jenkins

• X-11 ARIMA e X-12 ARIMA

As variantes X-11 ARIMA e X-12 ARIMA são os refinamentos mais difundidos do método Census II, criado pelo departamento de censo do governo americano em 1955. Este método utiliza a decomposição da série temporal, criando séries para sazonalidade, tendência, ciclo e aleatoriedade. Uma vez feita a decomposição, dados atípicos são refinados, tornando as séries livres de fatores externos que porventura venham a influir em seu comportamento.

A decomposição pelo método Census II envolve a aplicação de média móvel ponderada aos dados, causando a perda de alguns valores no início e no final da série temporal. A função das variantes X-11 ARIMA e X-12 ARIMA é fazer a previsão destes valores perdidos com o cálculo das médias, utilizando para isto, modelos de Box-Jenkins.

Esta metodologia é tratada com maior profundidade em McIntire (1998), Findley *et al.* (1998) e Pfeffermann *et al.* (1995).

• Regressão com Erros dos Modelos ARIMA

Nos modelos usuais de regressão, uma variável dependente é estimada através de uma ou mais variáveis independentes, acrescidos de um termo de resíduo. Supõe-se, via de regra, resíduos normalmente distribuídos, com média zero, variância σ_a^2 e componentes não correlacionados.

Os modelos de Box-Jenkins nem sempre modelam adequadamente uma série temporal. Muitas vezes, resíduos da modelagem Box-Jenkins possuem componentes correlacionados. Assim, pode-se utilizar estes resíduos como variáveis independentes em modelos de regressão (ver Makridakis *et al.*, 1998). Desta forma, utilizam-se as características dos modelos de Box-Jenkins para descrever, em conjunto com outras variáveis independentes, o comportamento da variável dependente.

2.3.9 Comentários sobre os Modelos de Box-Jenkins

Os modelos de Box-Jenkins constituem-se em importante ferramenta para solução de problemas de *forecasting*. A metodologia Box-Jenkins gera previsões acuradas da série temporal e oferece uma abordagem bem estruturada para a construção e análise do modelo. Porém, estes modelos possuem algumas limitações (Montgomery *et al.*, 1990):

- De maneira geral, são necessárias pelo menos 50 observações para o desenvolvimento de um modelo aceitável de Box-Jenkins. Este fato pode impossibilitar a obtenção dos modelos em situações onde não existem muitas observações disponíveis;
- Não existe uma maneira fácil de modificar (ou melhorar) as estimativas dos parâmetros do modelo quando novas observações são acrescidas à série de dados;
- O tempo despendido na construção de um modelo satisfatório costuma ser grande.
 Existem situações em que centenas, ou talvez milhares de séries temporais estão em estudo, o que pode inviabilizar economicamente a realização de melhorias na acurácia das previsões.

2.4 Redes Neurais

Redes neurais vêm sendo utilizadas por alguns autores como alternativas à modelagem de séries temporais usando técnicas estatísticas (Tafner, 2000). As redes neurais comportamse como o cérebro humano, tentando reconhecer regularidades e padrões nos dados que lhe são apresentados (Portugal, 1995). Nelas, estão dispostas unidades de processamento (ou neurônios artificiais), as quais se interconectam umas com as outras, formando redes capazes de armazenar e transmitir informações provindas do meio externo.

O neurônio artificial, conforme mostra a Figura 18, é uma estrutura lógicomatemática. Da mesma forma que um neurônio biológico, ele recebe sinais de entrada, faz uma ponderação dos mesmos, processa-os e os transfere para outros neurônios.

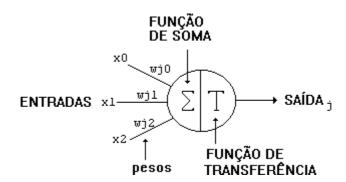


FIGURA 18. Neurônio artificial. (Fonte: Tafner, 2000).

Uma rede neural, exemplificada na Figura 19, pode ter até centenas ou milhares de neurônios artificiais, dispostos em diferentes camadas. A camada de entrada, ao contrário das camadas intermediárias e de saída, serve apenas para propiciar a entrada dos dados, não executando qualquer processamento sobre eles.

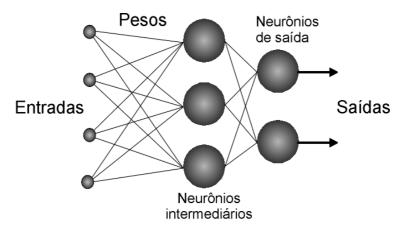


FIGURA 19. Rede neural de 2 camadas com 4 entradas e 2 saídas. (Fonte: Tafner, 2000).

A propriedade mais importante das redes neurais é a sua capacidade de "aprender", ou seja, reconhecer padrões e regularidades nos dados. Uma vez feito o aprendizado, a rede está apta a melhorar seu desempenho, e então extrapolar quanto a um comportamento futuro. Quanto maior for o número de neurônios na rede, maior será seu processo de aprendizagem, e conseqüentemente, melhor será seu desempenho.

Em muitos casos, as redes neurais conseguem modelar irregularidades em séries temporais de forma superior a modelos tradicionais. Porém, este método necessita um número maior de dados observados na série temporal e nem sempre se consegue entender o que se passa na modelagem, pois não existe um modelo explícito (Makridakis *et al.*, 1998).

2.5 Critérios para Avaliar a Adequação de Modelos a Séries Temporais

Dependendo do comportamento da série temporal que se deseja analisar, vários modelos podem ser empregados na previsão de seus valores futuros. A escolha do modelo mais apropriado é feita a partir do somatório dos erros gerados por cada modelo ($e_t = z_t - \hat{z}_t$). Uma vez que o cálculo dos erros pode resultar em valores positivos e negativos, zerando assim o seu somatório, diferentes formas de cálculo para o somatório dos erros podem ser empregadas. Estas diferentes formas de cálculo constituem-se em critérios para escolha de modelos mais apropriados a séries temporais. Os critérios mais utilizados são:

- Média do quadrado dos erros (MQE) = $\frac{1}{n} \sum_{t=1}^{n} e_t^2$,
- Média absoluta dos erros (MAE) = $\frac{1}{n} \sum_{t=1}^{n} |e_t|$,
- Média absoluta percentual dos erros (MAPE) = $\frac{1}{n} \sum_{t=1}^{n} \left| \frac{e_t}{z_t} \times 100 \right|$.

Assim, usando um dos critérios de cálculo, o modelo adequado será aquele que tiver o menor erro associado.

Dentre as formas de medir a acurácia do *forecasting* apresentadas, a mais popular é a MAPE (Kahn, 1998). Porém, quando a série temporal contém valores iguais a zero, torna-se impossível o uso de sua fórmula.

A Tabela 8 mostra um comparativo entre as medidas de acurácia apresentadas acima. Para tanto são usadas duas formas distintas de modelar a série temporal apresentada na Tabela 7: o modelo de Holt (seção 2.1.2) e o modelo ARIMA (3,1,0); seção 2.3.4. O modelo de Holt é utilizado por tratar-se de uma série com tendência, mas sem sazonalidade. Já o modelo ARIMA foi considerado apropriado com base nos critérios expostos no exemplo 3 da seção 1.3.7.5.

TABELA 8. Comparação entre medidas de erro para dois diferentes modelos.

	MQE	MAE	MAPE
ARIMA (3,1,0)	9,18	2,35	1,86
Modelo de Holt	13,06	3	2,36

A Tabela 8 mostra um desempenho superior do modelo ARIMA (3,1,0) em todas as três formas de medida de acurácia. Assim, tal modelo deve ser preferido ao modelo de Holt na previsão de valores futuros.

CAPÍTULO 3

3 Metodologia Proposta para a Estruturação de um Sistema de *Forecasting*

A elaboração de um sistema de *forecasting* requer, de uma organização, conhecimento e habilidade em 4 áreas básicas: (*i*) identificação e definição dos problemas a serem tratados no *forecasting*; (*ii*) aplicação dos métodos de *forecasting*; (*iii*) procedimentos para seleção do método apropriado a situações específicas; e (*iv*) suporte organizacional para adaptar e usar os métodos de *forecasting* requeridos.

Um sistema de *forecasting* deve estabelecer relações entre previsões feitas pelas diferentes áreas de gerenciamento. Existe um alto grau de dependência entre essas previsões; o perfeito entendimento da natureza desta dependência define o sucesso na implantação do sistema de *forecasting*. Por exemplo, um erro na projeção de vendas pode trazer uma série de prejuízos a todas as demais áreas da organização.

A aplicabilidade de um sistema de *forecasting* quantitativo depende de três condições (Makridakis *et al.*, 1998):

- Disponibilidade de informações históricas;
- Possibilidade da transformação das informações históricas em dados numéricos; e
- Suposição da repetição de padrões observados em dados passados no tempo futuro.

Esta última consideração é conhecida como suposição de continuidade. Tal condição é uma premissa básica em métodos quantitativos de *forecasting*, bem como em diversos dos métodos qualitativos.

As técnicas de *forecasting* quantitativas variam consideravelmente, tendo sido desenvolvidas com vários propósitos diferentes. Cada técnica possui características próprias, grau de acurácia e custos, os quais devem ser consideradas na escolha de um método específico.

De forma geral, os critérios para a escolha de um sistema de *forecasting* compreendem as etapas descritas na sequência.

3.1 Definição do Problema

Em algumas aplicações de *forecasting*, a definição do problema pode ser a etapa mais complexa. Diversos fatores devem ser analisados: como o *forecasting* será usado, onde será usado e como ele se encaixa dentro da organização. O nível de detalhe requerido é uma consideração de extrema importância, sendo influenciado por diversos fatores, tais como disponibilidade de dados, acurácia, custo da análise e preferências gerenciais.

O custo do *forecasting* está diretamente ligado à acurácia requerida. Uma vez que o aumento da acurácia diminui as perdas resultantes dos processos decisórios, a relação entre o custo do *forecasting* e as perdas causadas pela incerteza forma um *trade-off*, exemplificado na Figura 20.

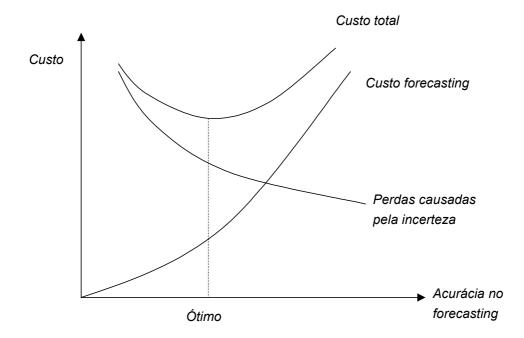


FIGURA 20. Relação entre acurácia e custo do forecasting. (Adaptado de Montgomery et al., 1990).

Fica claro, a partir da análise do gráfico na Figura 20, que após um determinado ponto o aumento dos recursos investidos não implica em aumento expressivo na acurácia. Sendo assim, procura-se trabalhar dentro de uma faixa que possibilite a melhor previsão a um menor custo.

Uma segunda classe de decisões envolve elementos temporais; mais especificamente, o período, horizonte e intervalo do *forecasting*.

O período é a unidade básica de tempo em que a previsão é requerida. Geralmente, ele é expresso em meses ou semanas, dependendo do espaço de tempo em que os dados de demanda estão armazenados. Dentre os elementos temporais, a magnitude do período é o fator que mais influencia na escolha do modelo a ser utilizado.

O horizonte é o número de períodos futuros cobertos pela previsão, sendo expresso na mesma unidade temporal do período. Ele está relacionado com a capacidade de resposta da organização. Quanto menos flexível for a organização, maior será o horizonte; quanto mais ágil, menor o horizonte. Recomenda-se que o horizonte deva ser, no mínimo, igual ao maior tempo de resposta da organização (Dias, 1999).

O intervalo é a frequência com a qual novas previsões são preparadas. Na definição desta frequência, existe um *trade-off* entre o risco de não se identificar uma mudança na série temporal e os custos na revisão do *forecasting*. Assim, o intervalo depende da estabilidade do

processo, das consequências de se estar usando uma previsão obsoleta, e dos custos do *forecasting* e do replanejamento. Geralmente o intervalo é igual ao período. Desta maneira, os modelos são revistos a cada período, usando a demanda do período mais recente (Montgomery *et al.*, 1990).

Durante a etapa de definição do problema, o técnico responsável pela elaboração do sistema de *forecasting* deve consultar todos aqueles envolvidos na coleta de dados, na manutenção do banco de dados e no uso das previsões para o planejamento futuro.

3.2 Coleta de Informações

Pelo menos dois tipos de informações devem estar disponíveis na elaboração de um sistema de *forecasting* (Makridakis *et al.*, 1998): (*i*) dados estatísticos (geralmente numéricos) e (*ii*) dados subjetivos oriundos de julgamento e perícia de especialistas (empregado, principalmente, na avaliação da qualidade dos dados a serem utilizados no sistema). Esses dois tipos de informação são essenciais na elaboração dos modelos de *forecasting*. Os dados estatísticos serão utilizados na modelagem matemática do *forecasting*; a opinião de especialistas é essencial para validação prática das previsões geradas pelo sistema.

3.2.1 Montagem do Banco de Dados

Os dados estatísticos a serem utilizados na previsão da demanda são usualmente armazenados dentro de um *banco de dados*. Um banco de dados é um conjunto de informações relacionadas a um assunto específico (Microsoft Access, 1994). Assim, uma simples lista de compras, uma agenda pessoal e um conjunto complexo de informações sobre um cliente são exemplos de banco de dados. No entanto, o termo é geralmente aplicado para registros computadorizados de informações, facilitando assim, a manipulação das informações nele contidas.

O banco de dados deve conter, além da série temporal (representada por produtos e a demanda dos mesmos a cada período), informações que possibilitem a utilização de filtros. O filtro, em um banco de dados, é a designação utilizada para quaisquer critérios empregados no agrupamento de dados. Considere, por exemplo, a estratificação da previsão da demanda para um cliente específico, uma região geográfica ou um vendedor; os filtros, no exemplo, são os clientes, a região geográfica e os vendedores.

A atualização do banco de dados deve ser feita a cada período, incorporando-se assim, as informações mais recentes aos modelos de previsão.

3.2.2 Classificação dos Produtos

Em certos sistemas de *forecasting*, centenas ou às vezes milhares de produtos podem estar em estudo. Porém, nem sempre se faz necessária, para fins gerenciais, a análise de todos os produtos individualmente. Muitos deles podem ser agregados, através de critérios prédeterminados, em uma mesma série temporal, e analisados conjuntamente.

A metodologia mais aplicada para a agregação de produtos é a classificação ABC, a qual determina a importância do produto, relacionando demanda e seu faturamento (Nahmias, 1993). Neste trabalho, sugere-se a utilização dessa classificação como critério de definição do nível de detalhamento a ser adotado na modelagem de séries temporais. Neste contexto, os produtos, aos quais estão associadas as séries temporais em estudo, podem ser classificados em 3 classes:

• Classe A

Esta classe representa 80 % do faturamento e cerca de 20 % dos produtos vendidos pela empresa. A previsão de demanda é feita individualmente para cada produto desta classe. Estratificações das séries temporais de demanda conforme região, cliente ou vendedor, por exemplo, podem também ser de interesse gerencial. De forma geral, somente estratificações nas séries correspondentes a produtos na classe A justificam-se economicamente.

Classe B

A classe B representa 15 % do faturamento e cerca de 30 % dos produtos vendidos pela empresa. A previsão de demanda é feita individualmente para cada produto, porém estratificações nas séries não são, via de regra, necessárias. Em casos onde nenhuma estratificação é efetuada sobre as séries na classe A, o tratamento estatístico das séries nas classes A e B são idênticos.

• Classe C

A classe C contempla 5 % do faturamento e cerca de 50 % dos produtos vendidos pela empresa. Para os produtos nesta classe, o mais indicado é a realização de uma previsão agregada de demanda.

Um outro método de agregação que também pode ser utilizado nesta etapa é a classificação dos produtos por família. Neste método, produtos com as mesmas características são agrupados em uma única série temporal, reduzindo significativamente o número de séries a serem analisadas.

3.2.3 Definição dos Níveis de Agregação

Algumas vezes, para se captar alguma característica no comportamento de uma série temporal, faz-se necessário uma agregação de seus elementos temporais. Por exemplo, quando se está analisando uma série contendo dados diários, pode não ser possível visualizar com facilidade um padrão no comportamento da série que se manifeste numa base mensal, o que poderia implicar em uma deficiência na modelagem. Neste caso, se poderia agregar os dados em períodos semanais e mensais, até que algum padrão possa ser identificado na série de maneira distinta.

Muitas vezes, mesmo após várias agregações temporais, nenhuma característica no comportamento da série é encontrada. Isto significa que os dados de demanda apresentam um comportamento totalmente aleatório, o que pode comprometer a acurácia de previsões futuras.

As agregações temporais são definidas, basicamente, pelos dados de demanda disponíveis. Já as agregações dos produtos, apresentadas nas seções 3.2.1 e 3.2.2, são definidas por preferências gerenciais, custos da análise, acurácia requerida e a disponibilidade dos dados de demanda (Montgomery *et al.*, 1990).

3.3 Seleção do Pacote Computacional

Dada a complexidade de alguns dos modelos de *forecasting*, faz-se necessário o uso de pacotes computacionais no cálculo da previsão de demanda. A escolha correta do pacote adequado pode ser difícil, devido a grande variedade de produtos disponíveis no mercado. A seguir, são apresentadas algumas questões que podem ser úteis na determinação do pacote computacional mais apropriado para apoio a um sistema de previsão de demanda (Makridakis *et al.*, 1998):

- O pacote deve possuir vantagens identificadas como essenciais pela gerência.
 Verifique os modelos de *forecasting* contemplados no produto, a forma de gerenciamento das informações, a apresentação gráfica e relatórios dos resultados obtidos na análise.
- Identifique o sistema operacional do pacote. O sistema deve ser compatível com aquele utilizado pelos computadores na empresa, ou permitir a transferência de dados entre sistemas operacionais distintos.
- O pacote deve ser de fácil utilização e aprendizado. Solicite uma demonstração de funcionamento do programa e verifique aspectos relacionados a sua facilidade de operacionalização.
- Verifique a possibilidade de implementação de novos modelos de *forecasting* no
 pacote computacional. Usuários avançados procuram fazer modificações em
 modelos existentes de *forecasting* ou mesmo implementar novos modelos nos
 pacotes. Para tanto, a linguagem de programação do pacote selecionado deve ser
 dominada pelos usuários (programadores) da empresa.
- Muitas vezes, centenas, ou às vezes milhares de séries temporais podem estar em estudo. Alguns pacotes possuem uma ferramenta que pode gerar rapidamente a

previsão individual de um conjunto de dados envolvendo milhares de séries temporais. Esta característica é de suma importância quando se necessita agilidade na analise de muitas séries.

- Verifique a capacidade de processamento de dados do pacote. Alguns sistemas de forecasting utilizam séries temporais bastante extensas, que podem facilmente ultrapassar o limite de capacidade de processamento de alguns pacotes computacionais.
- Verifique a acurácia das previsões calculadas pelo pacote. Apesar de possuírem diferentes algoritmos, pacotes distintos devem apresentar resultados, no mínimo, bem próximos. Assim, é interessante fazer uma comparação entre eles, uma vez que alguns podem conter erros.

3.3.1 Pacotes Computacionais Estatísticos de Uso Genérico

A maioria dos pacotes estatísticos (de uso) genéricos apresentam uma opção de análise de *forecasting*. Tais pacotes são recomendados a usuários que demandem uma análise estatística e gráfica detalhada dos dados. Entre os pacotes estatísticos genéricos mais difundidos, três são abordados na sequência: NCSS, Statgraphics e SPSS. A análise destes pacotes limita-se aos seus módulos de *forecasting*.

O NCSS (*Number Cruncher Statistical System*, 1996) possui, em seu módulo de *forecasting*, a possibilidade de uso dos modelos ARIMA, suavização exponencial e decomposição. O relatório de resultados da análise traz um grande número de informações, não disponíveis nos demais pacotes aqui abordados.

O Statgraphics (1995) também possui as opções dos modelos de decomposição, ARIMA e suavização exponencial no seu módulo de *forecasting*, apresentando uma melhor interface de utilização, se comparado ao NCSS.

O SPSS (*Statistical Package for Social Science*, 1997) é o melhor dentre os três pacotes genéricos aqui abordados. O programa oferece, no seu módulo de *forecasting*, as opções dos modelos de decomposição, ARIMA, suavização exponencial, regressão com erros dos modelos ARIMA e X-11 ARIMA.

3.3.2 Pacotes Computacionais Específicos

Os pacotes computacionais específicos para análise de *forecasting* contêm apenas as ferramentas estatísticas necessárias para a análise das séries temporais e geração das previsões. Sua vantagem se dá em funções relativas a previsão não encontradas em pacotes de uso genérico. Entre os pacotes específicos para análise de *forecasting*, destacam-se o Forecast Pro e o Autobox.

O Forecast Pro (1999) oferece a opção de escolha automática do modelo que melhor se adequa a uma série temporal. Para tanto, faz uma comparação entre os modelos ARIMA, suavização exponencial e X-11 ARIMA. O pacote também permite ao usuário a seleção do critério utilizado para comparação dos modelos obtidos em cada série. Uma outra característica importante do pacote é a possibilidade de fazer, simultaneamente, a previsão de um grande número de séries temporais em poucos segundos.

O Autobox (1999) oferece, basicamente, as mesmas opções do pacote computacional Forecast Pro. Porém, utiliza os modelos ARIMA, suavização exponencial, além da análise de regressão a partir dos erros oriundos dos modelos ARIMA.

3.4 Análise Preliminar

Nesta etapa, dados históricos são agrupados e representados graficamente. Desta maneira, pode-se identificar possíveis valores espúrios na série temporal, o que dificultaria a sua modelagem.

Valores espúrios podem ser causados por erros de digitação, falta de produtos, promoções esporádicas e variações no mercado financeiro, entre outras causas. Para o tratamento destes valores, sugerem-se os seguintes procedimentos:

Procedimento A. Quando o valor espúrio encontra-se no final da série temporal e
existem valores suficientes para gerar um modelo de previsão, substitui-se o valor
espúrio pela previsão relativa ao período correspondente ao dado excluído.

• Procedimento B. Quando o valor espúrio encontra-se no início da série temporal, o procedimento descrito anteriormente torna-se impossível. Uma sugestão para tal situação é fazer a substituição do valor espúrio por um valor médio das observações imediatamente adjacentes a ele, e gerar um modelo de previsão. Uma vez feita a previsão, o valor espúrio é substituído pela previsão relativa ao período correspondente.

Uma vez retirados os valores espúrios, analisam-se fatores como padrões, tendências e sazonalidades que podem estar presentes na série temporal em estudo. A análise gráfica preliminar fornece subsídios auxiliares na escolha dos modelos quantitativos a serem utilizados na modelagem matemática das diversas séries de dados.

3.5 Escolha e Validação dos Modelos

A escolha do modelo de previsão apropriado a uma série de dados temporais deve estar baseada, além da acurácia do modelo, nos seguintes fatores (Makridakis *et al.*, 1998):

• Aspectos que influenciam a demanda a ser analisada

O conhecimento de aspectos que podem influenciar a demanda, como, por exemplo, promoções ou campanhas promocionais, é de vital importância para o processo de previsão. Através deste tipo de informação, pode-se fazer com que a previsão, com o uso da análise subjetiva, se ajuste a casos particulares. Além disto, a previsão geralmente é feita para um intervalo de confiança, o qual pode ter uma magnitude elevada. Assim, mais uma vez, a análise subjetiva pode ser utilizada para aumentar a acurácia da previsão.

• Características da série temporal

Na seção 2.2, vimos que a previsão futura de uma série temporal pode ser feita através das previsões de seus componentes (sazonalidade, tendência, etc). A

previsão da sazonalidade, em virtude da sua regularidade, pode ser feita de maneira adequada por um grande número de modelos. Muitas séries, inclusive, podem ser modeladas de forma mais acurada se removido o componente sazonal (Makridakis & Hibon, 1997). Assim, sem o componente sazonal, o domínio de um dos componentes sobre os demais na série temporal pode definir o modelo a ser utilizado.

Quando a aleatoriedade domina a tendência-ciclo (muitos métodos de decomposição consideram a tendência e o ciclo como sendo um componente único), a suavização exponencial simples geralmente modela a série temporal de forma satisfatória.

Nos casos onde a tendência-ciclo domina a aleatoriedade, modelos mais complexos, tais como Box-Jenkins, são os mais indicados (Makridakis *et al.*, 1982).

Em séries temporais onde existe pouca aleatoriedade e o componente de tendência domina as flutuações cíclicas, o modelo de Holt (ver seção 2.1.2) geralmente produz bons resultados. Porém, quando o componente cíclico domina a tendência, o modelo de Holt pode gerar uma previsão pouco acurada, uma vez que a tendência linear não se mantém constante.

Agregação temporal dos dados

O grau de agregação temporal influencia na seleção do modelo, pois de maneira geral, a aleatoriedade diminui com o agrupamento dos dados. Assim, dados dispostos anualmente possuem pouca aleatoriedade e um forte componente de tendência, sugerindo o uso do modelo de Holt. Por outro lado, dados diários possuem grande aleatoriedade, sendo preferível o modelo de suavização exponencial simples.

Modelos mais complexos, como Box-Jenkins, produzem melhores resultados em agregações intermediárias (mensais ou quadrimensais), uma vez que podem exibir fortes componentes cíclicos e de tendência.

Intervalo das previsões

O intervalo, o qual relata a frequência com que novas previsões são preparadas, também pode nos ajudar a determinar o melhor modelo a ser utilizado. Dados com pouca agregação temporal (por exemplo, diários) requerem previsões em intervalos curtos de tempo. Assim, para dados dispostos diariamente são evitados modelos complexos, por serem muito trabalhosos e por poderem, potencialmente, tornar o sistema dispendioso.

3.6 Verificação do Sistema

Uma vez tendo-se os modelos e seus parâmetros estimados apropriadamente, sua utilização na predição da demanda futura pode ser testada. Neste ponto, o processo de implantação do sistema de *forecasting* é considerado concluído, tendo início o seu processo de manutenção. A manutenção do sistema consiste na incorporação de novas informações sobre as variáveis de interesse, obtidas após cada período, e revalidação dos modelos estatísticos inicialmente selecionados para sua previsão futura.

CAPÍTULO 4

4 Estudo de Caso

O estudo de caso, para a aplicação das técnicas de *forecasting*, foi realizado em uma empresa do ramo alimentício, localizada no interior do Rio Grande do Sul. Na análise das séries temporais dos produtos desta empresa, foi utilizado o pacote computacional Forecast Pro. Este pacote possibilita a escolha automática do modelo de previsão mais apropriado.

4.1 A Empresa

A empresa apresentada neste estudo é a Baumhardt Irmãos S. A. - Frigorífico Excelsior, localizada na cidade de Santa Cruz do Sul, RS. Suas atividades são o abate, industrialização e comércio de produtos suínos. A empresa conta com 400 funcionários e possui uma capacidade de abate de 200 suínos por hora, sendo seus produtos comercializados na região sul do país a uma proporção de 12 milhões de quilos por ano.

As carnes industrializadas somam uma demanda média de 200 toneladas por semana, e representam cerca de 85% do faturamento bruto da empresa. Elas se dividem em carnes curadas defumadas, embutidos crus frescos, embutidos escaldados e embutidos cozidos. Os diferentes tipos de carne são descritos na sequência.

 As carnes curadas defumadas são produzidas a partir de cortes anatômicos específicos. Estes cortes, após serem submetidos a um tratamento com sal, adição de conservantes e outros condimentos, passam por um período de repouso (cura), a fim de se obter a homogeneização das substâncias, sendo finalmente defumadas.

Na fabricação destes produtos são utilizadas salas de cura, injetoras e defumadouros.

As carnes curadas defumadas produzidas pela empresa estão apresentadas na Tabela 9.

TABELA 9. Carnes curadas defumadas produzidas pela empresa e pesos em que são comercializadas.

Produto	Peso
Bacon	6,5 kg
Bacon cryovac	250 g
Carrê defumado kassler	8,3 kg
Costela defumada	6,2 kg
Costela defumada em partes	380 g

Os embutidos crus frescos são produtos elaborados com matérias-primas cárneas cruas. Estas matérias-primas, após serem submetidas a um processo de moagem e mistura com sal, conservantes, condimento e aditivos, são embutidas em tripas naturais ou artificiais, podendo sofrer uma leve defumação e secagem. Sua durabilidade é limitada, necessitando de conservação sob refrigeração.

Na fabricação destes produtos são utilizados moedores, misturadores, embutideiras e defumadouros.

Os embutidos crus frescos produzidos pela empresa estão dispostos na Tabela 10.

TABELA 10. Embutidos crus frescos produzidos pela empresa e pesos em que são comercializados.

Produto	Peso
Linguiça calabresa	400 g
Linguiça calabresa fina	3 kg
Linguiça calabresa grossa	3 kg
Linguiça carne de porco	450 g
Linguiça carne de porco congelada	1 kg

Os embutidos escaldados são elaborados com matérias-primas cárneas cruas. Estas matérias-primas, após serem submetidas a diversos processos de corte, emulsificação e cura, recebem um tratamento térmico, o qual ocasiona a coagulação da proteína cárnica. Este tratamento proporciona consistência ao produto, bem como uma boa conservação sob refrigeração.

Na fabricação destes produtos, são utilizados moedores, misturadores, emulsionadores, embutideiras e estufas ou tanques de cozimento.

Os embutidos escaldados produzidos pela empresa estão apresentados na Tabela 11.

 Os embutidos cozidos são elaborados com matérias-primas cárneas pré-cozidas (carne, gordura e couro) e matérias-primas cárneas cruas (figado). Estas, após serem adicionadas de sal e condimentos, picadas, misturadas e embutidas, recebem um cozimento final.

Na fabricação destes produtos são utilizados moedores, misturadores, emulsionadores, embutideiras e tanques de cozimento.

Os embutidos cozidos produzidos pela empresa estão dispostos na Tabela 12.

TABELA 11. Embutidos escaldados produzidos pela empresa e pesos em que são comercializados.

Produto	Peso	Produto	Peso
Afiambrado	2,6 kg	Presunto cozido fatiado	200 g
Afiambrado fatiado	1,1 kg	Presunto cozido sem capa de gordura	3,6 kg
Apresuntado	3,7 kg	Salsicha bock	400 g
Apresuntado (T)	3 kg	Salsicha bock	2,8 kg
Apresuntado fatiado	200 g	Salsicha dogão	3 kg
Apresuntado oval	2,6 kg	Salsicha dogão II	2,5 kg
Fiambre com picles	2,6 kg	Salsicha doguinho	320 g
Fiambre com picles fatiado	200 g	Salsicha doguinho	850 g
Mortadela	330 g	Salsicha doguinho	3 kg
Mortadela	500 g	Salsicha grossa	3 kg
Mortadela	1 kg	Salsicha hot dog	400 g
Mortadela fatiada	200 g	Salsicha hot dog	3 kg
Mortadela fatiada	250 g	Salsicha super dog	800 g
Mortadela fatiada	1,1 kg	Salsicha urucum	3 kg
Mortadela tubo	3 kg	Salsichão com picles	330 g
Paleta cozida	3,75 kg	Salsichão lionês	330 g
Presunto cozido	3,6 kg		

TABELA 12. Embutidos cozidos produzidos pela empresa e pesos em que são comercializados.

Produto	Peso
Morcela	250 g
Pasta de bacon	100 g
Pasta de bacon	250 g
Pasta de carne	100 g
Pasta de figado	100 g
Pasta de figado	250 g
Pasta de galinha	100 g
Pasta de galinha	250 g
Pasta de presunto	100 g
Pasta de presunto	250 g
Pasta mista	100 g
Pasta mista	250 g

Dada a importância que as carnes industrializadas representam para a empresa, considerou-se apropriado, por parte da alta gerência, prever suas demandas futuras. As previsões que vinham sendo atualmente feitas pela empresa eram baseadas exclusivamente na opinião do pessoal de vendas, não utilizando nenhuma técnica quantitativa. Assim, uma implementação de técnicas de *forecasting* na empresa em estudo pode aumentar a acurácia das previsões, possibilitando um melhor planejamento da produção.

4.2 Estruturação do Sistema de Forecasting

Os produtos da empresa, apresentados nas Tabelas 9, 10, 11 e 12, são mantidos em um banco de dados, o qual é atualizado semanalmente. Como o planejamento da produção é feito para cada semana, o período e o intervalo do *forecasting* também foram definidos para a mesma unidade de tempo.

O horizonte do *forecasting* considerado ideal pela empresa é de 8 semanas. Com este horizonte, a empresa seria capaz, na pior das hipóteses, de adaptar-se a grandes flutuações na demanda dos produtos que comercializa.

4.2.1 Classificação dos Produtos

A empresa possui 55 diferentes produtos industrializados, o que implicaria na análise de, no mínimo, 55 séries temporais distintas. Porém, muitos destes produtos possuem características semelhantes, passando, inclusive, pelos mesmos processos de fabricação. Assim, os produtos foram inicialmente classificados em famílias, por similaridades de composição e processamento. As famílias foram definidas pela gerência da empresa. A seguinte classificação foi obtida:

- Pastas 100 g abrangendo todas as pastas de 100 g, ou seja, 6 produtos diferentes.
- Pastas 250 g abrangendo todas as pastas de 250 g, ou seja, 6 produtos diferentes.

- Presunto cozido este produto foi tratado individualmente, por ser considerado como sendo um dos três produtos mais importantes para a empresa (juntos, estes três produtos representam aproximadamente 60 % do seu faturamento).
- Presuntos esta série englobou a paleta cozida e o presunto cozido sem capa de gordura.
- Apresuntados englobando o apresuntado, apresuntado (T) e apresuntado oval.
- Fiambres abrangendo o afiambrado, afiambrado fatiado e fiambre com picles.
- Fatiados 200 g abrangendo todos os produtos fatiados de 200 g, mais a mortadela fatiada de 250 g. Ao todo, esta série possui 5 produtos.
- Mortadela tubo este produto, da mesma forma que o presunto, foi tratado individualmente. A mortadela tubo é um dos três produtos mais importantes da empresa.
- Mortadela fatiada este produto também foi tratado individualmente, por ser um dos três produtos mais importantes da empresa.
- Mortadela outras inclui a mortadela de 1 kg e de 500 g.
- Salsichões desta família fazem parte o salsichão lionês (330 g), o salsichão com picles (330 g) e a mortadela (330 g).
- Linguiças esta família abrange todas as linguiças, num total de 5 produtos diferentes.
- Salsichas 3 kg desta família fazem parte as salsichas com 2,5 e 3 kg, totalizando
 7 produtos diferentes.
- Salsichas AS esta família agrupa salsichas em embalagem pequena (autoserviço), totalizando 5 produtos diferentes.
- Defumados desta família fazem parte as carnes curadas defumadas, totalizando 5 produtos diferentes.

Com este agrupamento, foi possível diminuir de 55 para 15 o número de séries temporais em estudo. Porém, com esta nova classificação, todas as séries teriam igual importância dentro do processo de previsão. Assim, os produtos tidos como mais importantes para a empresa (por exemplo, Presunto Cozido) receberiam o mesmo tratamento estatístico

dos produtos de menor importância (por exemplo, defumados). A solução para este problema foi obtida reclassificando-se as famílias acima, desta vez utilizando uma classificação do tipo ABC.

Na classificação ABC, foi relacionada a demanda média semanal de cada uma das 15 séries e seus respectivos faturamentos. O cálculo da demanda média compreendeu o período entre a primeira semana de 1998 e a vigésima semana de 2000, num total de 124 semanas. O resultado da classificação ABC está apresentado na Tabela 13.

TABELA 13. Classificação ABC das famílias de produtos.

Série	Demanda média ×	% unitário	Soma %	Classe
	faturamento			
Mortadela Tubo	2666,89	0,3627	0,3627	A
Mortadela Fatiada	2390,87	0,3252	0,6879	A
Presunto Cozido	840,63	0,1143	0,8022	A
Salsichas 3 kg	300,05	0,0408	0,8430	В
Mortadela Outros	248,65	0,0338	0,8768	В
Salsichas AS	216,49	0,0299	0,9067	В
Fiambres	163,26	0,0222	0,9289	В
Linguiças	109,68	0,0149	0,9438	В
Salsichões	96,39	0,0131	0,9569	C
Apresuntados	83,12	0,0113	0,9682	C
Defumados	78,80	0,0107	0,9789	\mathbf{C}
Presuntos	62,47	0,0085	0,9874	C
Pastas 100g	41,00	0,0056	0,9930	C
Pastas 250g	33,85	0,0046	0,9976	C
Fatiados 200g	17,69	0,0024	1,0000	C

A classe A, conforme apresentado na seção 3.2.2, representa aproximadamente 80 % do faturamento da empresa. Os produtos nesta classe são os mais importantes para a empresa, o que vem a confirmar o procedimento adotado na primeira classificação. Assim, além da previsão de demanda individual, estes produtos devem ser estratificados conforme interesses gerenciais. No presente estudo, considerando os interesses da empresa, os produtos classe A foram estratificados somente quanto ao tipo de cliente, conforme apresentado mais adiante neste capítulo.

A classe B representa aproximadamente 15 % do faturamento da empresa. As previsões de demanda dos produtos nesta classe ainda serão feitas individualmente, mas não serão sujeitas a estratificações.

A classe C representa aproximadamente 5 % do faturamento da empresa. Por não serem considerados importantes, estes produtos serão agrupados em uma única série temporal. Assim, a previsão de demanda para os produtos classe C será do tipo agregada e sem estratificações de qualquer natureza.

A segunda classificação dos produtos, utilizando o critério ABC, permitiu uma redução significativa no número de séries a serem investigadas neste trabalho. Este fato foi decisivo para a racionalização do tempo empregado neste estudo de caso.

4.2.2 Análise e Previsões das Séries Temporais

As séries temporais foram analisadas e preditas com o auxílio do pacote computacional Forescast Pro (1999). Todas as séries são constituídas de dados de demanda semanais, no período compreendido entre a primeira semana de 1998 e a vigésima de 2000, totalizando 124 observações (os dados analisados estão apresentados no Anexo). Os dados de demandas representam o peso do produto, em kg. Considerando que o horizonte de previsão a ser adotado no estudo de caso foi definido como sendo de 8 semanas, foram geradas previsões para os períodos entre a vigésima primeira e vigésima oitava semanas de 2000.

O primeiro passo para a análise das séries temporais é a remoção de seus valores espúrios ou atípicos. Para tanto, no caso em estudo, foi feita a primeira modelagem das séries com o auxílio do pacote computacional. Compararam-se os valores de demanda realizada com os valores contidos no intervalo de confiança ao nível de 80% para a demanda predita: valores de demanda realizada não contidos no intervalo foram considerados espúrios, sendo removidos da série e substituídos por suas respectivas previsões, conforme descrito na seção 3.4. A escolha do intervalo de confiança de 80 % para este procedimento se deu em virtude de sua boa visualização dos valores atípicos contidos na série temporal.

O procedimento de identificação e remoção de valores espúrios apresentado acima deve ser acompanhado, idealmente, de uma análise subjetiva dos dados apontados como

atípicos. Tal análise tem por objetivo associar causas especiais aos valores espúrios. No contexto deste estudo de caso, causas especiais podem incluir, por exemplo, promoções feitas pela empresa, reduções esporádicas nos preços dos produtos comercializados pela concorrência, entrada de novos concorrentes em regiões ou clientes específicos, falhas no planejamento da produção ou na compra de insumos (gerando escassez de produtos). Sempre que considerados de ocorrência esporádica e sem um padrão pré-estabelecido, dados espúrios associados a causas especiais podem ser removidos da série, em busca de um melhor ajuste do modelo aos dados. Quando este não for o caso, todavia, corre-se o risco de reduzir-se artificialmente a variabilidade da série, gerando, como consequência, predições pouco realistas.

Na análise das séries apresentadas na sequência, séries temporais nas classes A e B tiveram valores espúrios identificados pelo procedimento proposto acima e analisados, com vistas à sua remoção, em conjunto com a equipe técnica e de vendas da empresa; somente valores espúrios associados a causas especiais foram removidos dessas séries. Séries temporais na classe C, em contrapartida, tiveram valores espúrios removidos sem análise gerencial.

4.2.2.1 Classe A

Para os 3 produtos pertencentes a classe A, além de previsões individuais, foram geradas estratificações por tipo de cliente. Três tipos de clientes foram analisados: distribuidores, supermercados e outros (açougues, padarias, bares, restaurantes, etc.). Os resultados obtidos são apresentados na sequência, separados por produto.

Mortadela Fatiada

A série de dados de demanda correspondente ao produto Mortadela Fatiada está apresentada na Tabela A 1 do Anexo. A modelagem da série vem apresentada na Figura 21. As informações relativas ao modelo matemático selecionado para a série temporal são apresentadas na Tabela 14.

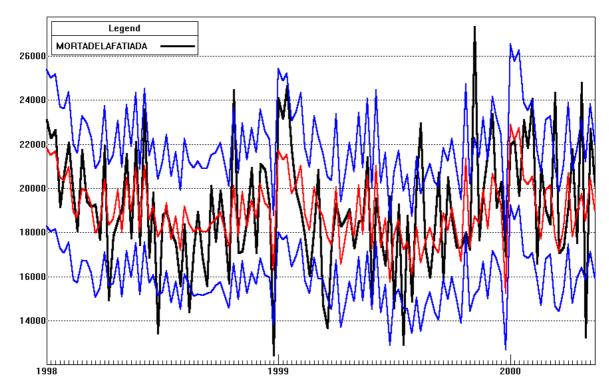


FIGURA 21. Modelagem da série Mortadela Fatiada antes da remoção de pontos espúrios.

TABELA 14. Dados do modelo selecionado para o produto Mortadela Fatiada, antes da remoção de pontos espúrios.

Características da série	Estacionária e sazonal
Modelo escolhido	Winters multiplicativo, $\alpha = 0.0313$, $\beta = 0$ e $\gamma = 0.3167$
Ajuste (R^2)	0,3145
MAPE	0,09442

Na Figura 21, a linha preta apresenta a evolução temporal dos dados de demanda realizada. A linha vermelha, em contrapartida, apresenta os valores preditos de demanda para o mesmo período de tempo. As linhas em azul delimitam o intervalo de confiança, ao nível de 80%, para a demanda predita. Parece claro que o modelo matemático, representado em vermelho, não captura a totalidade dos pontos da série, representados em preto. Pontos de demanda realizada posicionados além das linhas azuis foram considerados como potenciais valores espúrios e submetidos a análise gerencial. A série resultante após remoção de valores espúrios associados a causas especiais vem apresentada na Tabela A2 do Anexo.

A modelagem da série temporal na Tabela A2 do Anexo vem apresentada na Figura 22. As informações relativas ao modelo matemático selecionado para a série temporal são

apresentadas na Tabela 15. As linhas em azul na Figura 22 delimitam o intervalo de confiança, ao nível de 95 %, para a demanda predita.

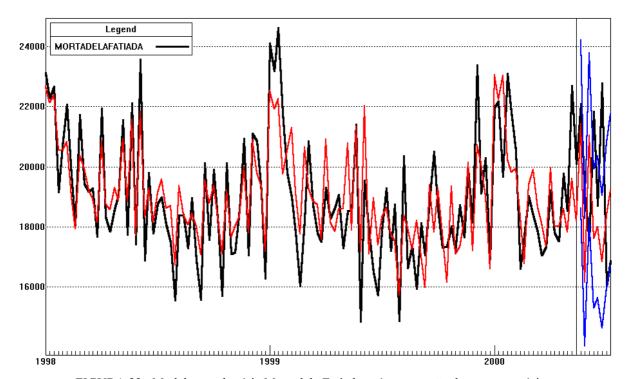


FIGURA 22. Modelagem da série Mortadela Fatiada após a remoção de pontos espúrios.

TABELA 15. Dados do modelo selecionado para o produto Mortadela Fatiada, após a remoção de pontos espúrios.

Características da série Modelo escolhido	Não estacionária e sazonal Winters multiplicativo, $\alpha = 0.0296$, $\beta = 0$ e $\gamma = 0.4653$
Ajuste (R^2)	0,6341
MAPE	0,05269

Após a remoção de valores espúrios, o ajuste da série, analisado a partir de seu coeficiente de determinação (R^2), apresentou melhoria, aumentando de 0,3145 para 0,6341. Apesar da melhoria no ajuste, as demandas realizadas ultrapassaram os limites de confiança em 4 das 8 semanas que compõem o horizonte do *forecasting*, conforme apresentado na Tabela 16. Segundo informações obtidas junto à empresa, estas distorções ocorreram como consequência de promoções realizadas pelos distribuidores do produto.

TABELA 16. Demanda prevista, limites superior e inferior de confiança (95 %) e demanda realizada para a
série Mortadela Fatiada, no horizonte de <i>forecasting</i> .

Período	Limite inferior	Previsto	Limite superior	Realizado
2000/21	18619,3	21421,2	24223,1	22096,8
2000/22	14050	16166,2	18282,3	19093,8
2000/23	18283,2	21036,7	23790,3	17549,4
2000/24	15312,6	17621,2	19929,9	21832,8
2000/25	15640,7	17999,8	20358,8	18704,4
2000/26	14642,7	16853,2	19063,7	22789,8
2000/27	15997,6	18412,4	20827,2	16031,4
2000/28	16709,7	19232,6	21755,4	16876,2

Na sequência, a série temporal do produto Mortadela Fatiada tem seus dados estratificados por tipo de cliente (distribuidores, supermercados e outros).

Os dados de demanda para o cliente do tipo *distribuidores* estão apresentados na Tabela A3 do Anexo. Sua modelagem, após tratamento dos valores espúrios, está representada na Figura 23. As informações relativas ao modelo matemático selecionado para a série temporal são apresentadas na Tabela 17.

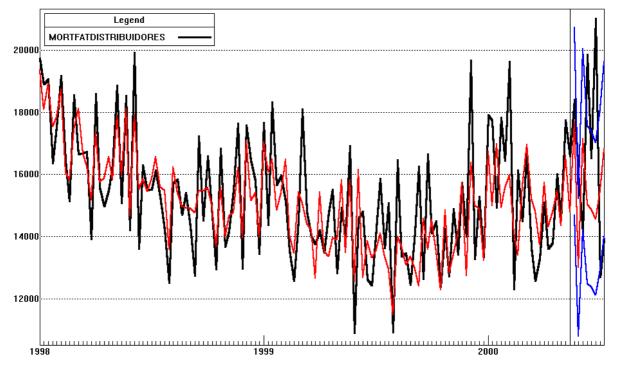


FIGURA 23. Modelagem da série Mortadela Fatiada estratificada para clientes do tipo *distribuidores* (modelagem obtida após tratamento de valores espúrios na série temporal).

TABELA 17. Dados do modelo selecionado para o produto Mortadela Fatiada, estratificada para clientes do tipo *distribuidores*.

Características da série	Tendência e sazonalidade
Modelo escolhido	Winters multiplicativo, $\alpha = 0.0272$, $\beta = 0.1476$ e $\gamma = 0.4009$
Ajuste (R^2)	0,5553
MAPE	0,068

Observe na Figura 23 que o comportamento da demanda em clientes do tipo distribuidores apresentou queda nos anos de 1998 e 1999, com recuperação nos primeiros meses do ano 2000. Esta série também foi tratada quanto a valores espúrios. Após a remoção de pontos atípicos, o ajuste da série (R^2) aumentou de 0,2694 para 0,5553. As demandas realizadas, todavia, ultrapassaram os limites de confiança em 6 das 8 semanas que compõem o horizonte de *forecasting*, conforme apresentado na Tabela 18. Tais distorções, mais uma vez, decorreram-se de promoções realizadas pelos distribuidores do produto.

TABELA 18. Demanda prevista, limites superior e inferior de confiança (95 %) e demanda realizada para o produto Mortadela Fatiada no horizonte de *forecasting*, estratificada para clientes do tipo *distribuidores*.

Período	Limite inferior	Previsto	Limite superior	Realizado
2000/21	14688,1	17703,8	20719,6	18414
2000/22	10800,1	13011,7	15223,2	15998,4
2000/23	14236,7	17140,6	20044,5	14143,8
2000/24	12485,2	15025,1	17564,9	19859,4
2000/25	12386,8	14898,8	17410,9	16526,4
2000/26	12114,2	14563,7	17013,1	21027,6
2000/27	12917,8	15520,4	18123	12685,2
2000/28	14005,6	16817	19628,3	13912,8

Os dados de demanda para o cliente do tipo *supermercados* estão apresentados na Tabela A4 do Anexo. Sua modelagem, após tratamento dos valores espúrios, está representada na Figura 24. Pode-se observar que os dados de demanda são dominados por um forte componente aleatório e uma certa tendência ascendente. O modelo selecionado para modelagem desses dados foi um ARIMA, com componente auto-regressivo zerado. As informações relativas ao modelo são apresentadas na Tabela 19.

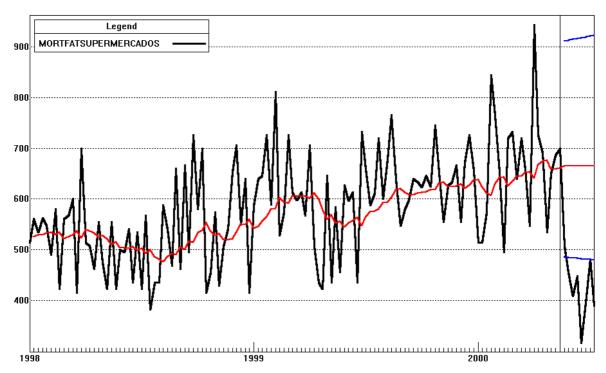


FIGURA 24. Modelagem da série Mortadela Fatiada estratificada para clientes do tipo *supermercados* (modelagem obtida após tratamento de valores espúrios na série temporal).

TABELA 19. Dados do modelo selecionado para o produto Mortadela Fatiada, estratificada para clientes do tipo *supermercados*.

Características da série	Não estacionária e não sazonal
Modelo escolhido	ARIMA (0,1,1), $\theta_1 = 0.8921$
Ajuste (R^2)	0,2075
MAPE	0,126

O forte componente aleatório observado nos dados de demanda (evidenciado na Figura 24) resultou num modelo com ajuste deficiente ($R^2 = 0,2075$). Apesar de modelos mais simples geralmente oferecerem melhor ajuste a séries temporais com aleatoriedade excessiva, um modelo de Box-Jenkins apresentou o melhor valor de MAPE neste caso. Mesmo assim, as demandas realizadas ultrapassaram o limite inferior de confiança das predições em 6 das 8 semanas que compõem o horizonte de *forecasting* (ver Tabela 20 e extremidade direita da Figura 24). O comportamento atípico da demanda no horizonte de *forecasting* ocorreu em virtude de uma estratégia interna da empresa em relação a um dos maiores clientes do grupo *supermercados* (a empresa optou por não reagir à entrada de um concorrente em uma rede de supermercados a quem vendia seus produtos). Neste contexto, desaconselha-se a utilização dos dados históricos de demanda na previsão da demanda futura.

Um novo banco de dados de demanda deveria ser formado a partir do novo perfil de demanda observado para o segmento *supermercados*, para utilização futura.

TABELA 20. Demanda prevista, limites superior e inferior de confiança (95 %) e demanda realizada para o produto Mortadela Fatiada no horizonte de *forecasting*, estratificada para clientes do tipo *supermercados*.

Período	Limite inferior	Previsto	Limite superior	Realizado
2000/21	485,8	665,4	911,4	508,2
2000/22	484,9	665,4	913,1	455,4
2000/23	484	665,4	914,7	409,2
2000/24	483,1	665,4	916,4	448,8
2000/25	482,3	665,4	918	316,8
2000/26	481,4	665,4	919,7	396
2000/27	480,5	665,4	921,3	481,8
2000/28	479,7	665,4	922,9	389,4

Na etapa final da análise do produto Mortadela Fatiada, estratificou-se a demanda do produto para clientes do tipo *outros*. Os dados de demanda encontram-se na Tabela A5 do Anexo e são apresentados graficamente na Figura 25 (linha preta). Os dados apresentam uma tendência ascendente com aleatoriedade moderada. O modelo selecionado (ARIMA $(0,1,1) \times (1,0,0)_{52}$) capturou um padrão sazonal na série de dados, não identificável, a princípio, através da análise gráfica. Demais informações sobre o modelo selecionado podem ser obtidos na Tabela 21.

TABELA 21. Dados do modelo selecionado para o produto Mortadela Fatiada, estratificada para clientes do tipo *outros*.

Características da série Modelo escolhido	Não estacionária e sazonal ARIMA $(0,1,1) \times (1,0,0)_{52}$, $\theta_1 = 0,9901$ e $\Phi_1 = 0,9637$
Ajuste (R^2)	0.7373
MAPE	0,05796

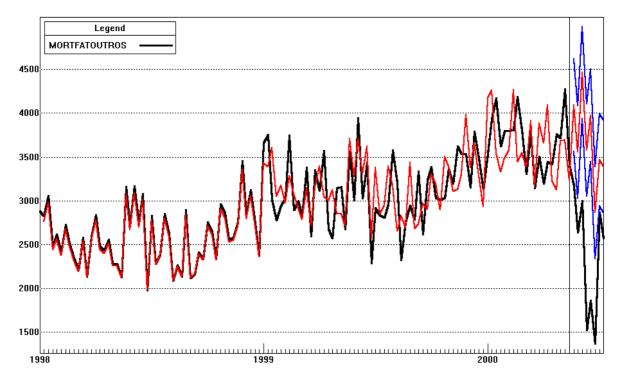


FIGURA 25. Modelagem da série Mortadela Fatiada estratificada para clientes do tipo *outros* (modelagem obtida após tratamento de valores espúrios na série temporal).

Apesar do modelo ARIMA oferecer um bom ajuste aos dados da série ($R^2 = 0.7373$), as demandas realizadas extrapolaram os limites de confiança para a previsão em todas as semanas que compõem o horizonte do *forecasting* (ver Tabela 22). Isto ocorreu em virtude de uma nova política adotada pela empresa. Com esta política, o comércio deste produto a clientes do tipo *outros*, que até então vinha sendo feito pela própria empresa, passou a ser realizado pelos distribuidores.

TABELA 22. Demanda prevista, limites superior e inferior de confiança (95 %) e demanda realizada para o produto Mortadela Fatiada no horizonte de *forecasting*, estratificada para clientes do tipo *outros*.

Período	Limite inferior	Previsto	Limite superior	Realizado
2000/21	3566,7	4094	4621,3	3174,6
2000/22	3027	3554,3	4081,5	2640
2000/23	3935,6	4462,9	4990,2	2996,4
2000/24	3053	3580,4	4107,7	1524,6
2000/25	3445,8	3973,2	4500,5	1861,2
2000/26	2335,9	2863,2	3390,6	1366,2
2000/27	2942,7	3470,1	3997,5	2864,4
2000/28	2866,9	3394,3	3921,8	2574

Mortadela Tubo

O segundo produto analisado neste estudo, também pertencente à classe A, é a Mortadela Tubo. Na apresentação que se segue, será possível observar (i) a boa adequação dos modelos selecionados aos dados de demanda e (ii) a não-ocorrência de eventos especiais no horizonte de *forecasting*. O resultado são demandas previstas e realizadas bastante próximas, no horizonte de *forecasting*, para as diferentes análises efetuadas sobre os dados da série. Este resultado contrasta com aqueles obtidos na análise do produto Mortadela Fatiada, onde bons modelos geraram previsões inacuradas devido à incidência frequente de eventos especiais sobre o processo gerador dos dados de demanda.

A série de dados de demanda para o produto Mortadela Tubo está apresentada na Tabela A 6 do Anexo. A modelagem da série vem apresentada na Figura 26. As informações relativas ao modelo matemático selecionado para a série temporal são apresentadas na Tabela 23. Na análise deste produto, somente são apresentadas séries tratadas quanto à ocorrência de valores espúrios.

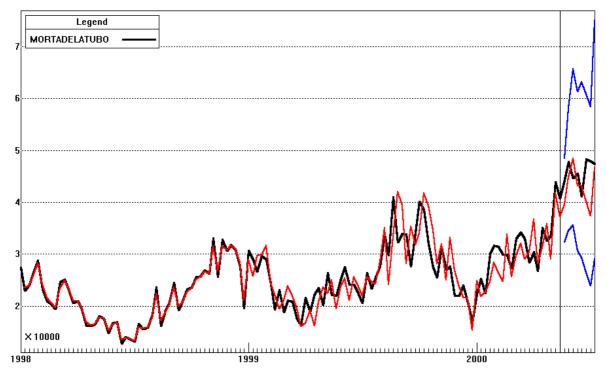


FIGURA 26. Modelagem da série Mortadela Tubo após a remoção de pontos espúrios.

TABELA 23. Dados do modelo selecionado para o produto Mortadela Tubo, após a remoção de pontos espúrios.

Características da série Modelo escolhido	Não estacionária e sazonal ARIMA $(0,1,1) \times (1,0,0)_{52}, \ \theta_1 = 0,1942 \ \ e \ \ \Phi_1 = 0,8953$
Ajuste (R^2)	0,8437
MAPE	0,07462

Na série de dados na Figura 26, a remoção de valores espúrios foi bastante moderada. Observe o bom ajuste aos dados proporcionado pelo modelo ARIMA, com R^2 = 0,8437. A adequação do modelo aos dados também pode ser verificada através do gráfico na Figura 26: observe a proximidade entre as linhas preta (realizado) e vermelha (prevista). Por fim, observe a sazonalidade na demanda do produto, com picos nos meses iniciais e finais do ano, e uma tendência de aumento na demanda, em particular nos últimos meses da série.

As demandas previstas para o produto Mortadela Tubo no horizonte de *forecasting* vêm apresentadas na terceira coluna da Tabela 24; os valores de demanda realizada estão apresentados na última coluna daquela tabela. Tendo em vista a adequação do modelo aos dados e a não-ocorrência de eventos especiais que alterassem o padrão de demanda do produto, os valores previstos e realizados encontram-se bastante próximos.

TABELA 24. Demanda prevista, limites superior e inferior de confiança (95 %) e demanda realizada para a série Mortadela Tubo, no horizonte de *forecasting*.

Período	Limite inferior	Previsto	Limite superior	Realizado
2000/21	32342,1	39567,1	48406,1	44475
2000/22	34628,3	44863,2	58123,2	47814
2000/23	35660,5	48411,9	65722,8	44718
2000/24	30640,6	43316	61235	45540
2000/25	29401,2	43097,4	63173,9	41166
2000/26	26552,3	40230,7	60955,5	48276
2000/27	23926,8	37380,5	58399,1	47904
2000/28	29047,4	46700	75080,5	47448

Na sequência, apresentam-se as análises da série temporal do produto Mortadela Tubo com dados estratificados por tipo de cliente: distribuidores, supermercados e outros.

Os dados de demanda do produto Mortadela Tubo, estratificados para clientes do tipo *distribuidores*, estão apresentadas na Tabela A 7 do Anexo. Sua modelagem está representada na Figura 27, com informações sobre o modelo selecionado dadas na Tabela 25.

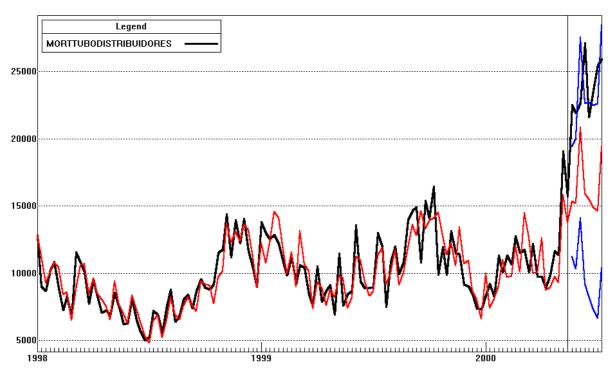


FIGURA 27. Modelagem da série Mortadela Tubo estratificada para clientes do tipo *distribuidores* (modelagem obtida após tratamento de valores espúrios na série temporal).

TABELA 25. Dados do modelo selecionado para o produto Mortadela Tubo, estratificada para clientes do tipo *distribuidores*.

Características da série Modelo escolhido	Tendência e sazonalidade Winters multiplicativo, $\alpha = 0.6460$, $\beta = 0$ e $\gamma = 0.9999$
Ajuste (R^2)	0,705
MAPE	0,1038

Analise os dados de demanda realizada agregada apresentados na Figura 26. Compare, a seguir, os dados de demanda realizada estratificada para o mesmo produto, apresentados nas Figuras 27 (distribuidores), 28 (supermercados) e 29 (outros). Observa-se, na Figura 26, uma tendência de aumento na demanda agregada do produto no primeiro semestre de 2000. Tal tendência apresenta-se bastante acentuada na Figura 27 e moderada na Figura 29. Nenhuma tendência de aumento na demanda do produto Mortadela Tubo pode ser observada para o

primeiro semestre de 2000 na Figura 28. Conclui-se, assim, que o aumento na demanda do produto ocorreu, principalmente, nos mercados atendidos pelos distribuidores. Esta informação, obtida a partir da estratificação dos dados, apresenta evidente relevância gerencial, podendo servir como apoio em tomadas de decisões operacionais sobre o produto em estudo.

Na Tabela 26, observa-se o desempenho do modelo na Tabela 25 quanto à previsão da demanda no horizonte de *forecasting*. Apesar do bom ajuste do modelo aos dados (R^2 = 0,705), a demanda realizada no horizonte de *forecasting* extrapola o limite superior da previsão em 5 das 8 semanas analisadas. Estas distorções no padrão de demanda do produto, visualizadas no comparativo gráfico proposto no parágrafo anterior, deveram-se a promoções realizadas pelos distribuidores do produto.

TABELA 26. Demanda prevista, limites superior e inferior de confiança (95 %) e demanda realizada para o produto Mortadela Tubo no horizonte de *forecasting*, estratificada para clientes do tipo *distribuidores*.

Período	Limite inferior	Previsto	Limite superior	Realizado
2000/21	11216,2	15321,1	19426	22509
2000/22	10332,9	15190,2	20047,5	21918
2000/23	14110,3	20823,5	27536,8	22698
2000/24	9197,6	15913,9	22630,1	27114
2000/25	8317,7	15514,3	22711	21630
2000/26	7301,1	14893,6	22486,1	23628
2000/27	6648,1	14631,5	22614,9	25482
2000/28	10383,4	19432,5	28481,5	25944

Na seqüência, analisam-se os dados de demanda do produto Mortadela Tubo, estratificados para clientes do tipo *supermercados*. Os dados estratificados são apresentados na Tabela A 8 do Anexo. A modelagem proposta para a série vem representada na Figura 28. As informações relevantes sobre o modelo selecionado vêm dadas na Tabela 27.

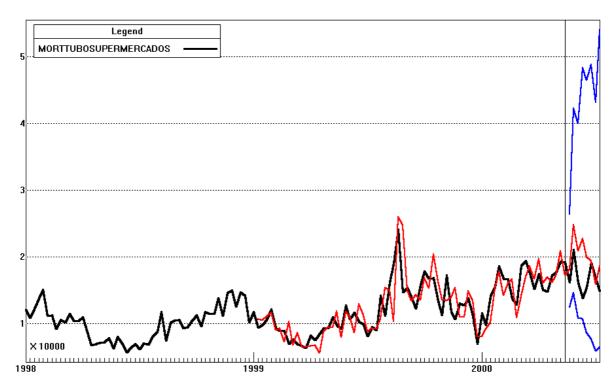


FIGURA 28. Modelagem da série Mortadela Tubo estratificada para clientes do tipo supermercados.

TABELA 27. Dados do modelo selecionado para o produto Mortadela Tubo, estratificada para clientes do tipo *supermercados*.

Características da série	Tendência e sazonalidade
Modelo escolhido	ARIMA $(0,1,0) \times (0,1,0)$
Ajuste (R^2)	0,783
MAPE	0,08532

O bom ajuste do modelo ARIMA aos dados (R^2 = 0,783) e a não-ocorrência de eventos especiais no processo gerador dos dados de demanda, resultaram em demandas previstas próximas a demandas realizadas no horizonte de *forecasting*; este resultado vem apresentado na Tabela 28. Finalmente, observe que as previsões na Figura 28, somente são feitas a partir do segundo ano; isto deve-se à diferenciação sazonal demandada pelo modelo ARIMA. Conforme visto na seção 2.3.6, o mecanismo algébrico da diferenciação sazonal sacrifica os dados contidos na primeira estação.

TABELA 28. Demanda prevista, limites superior e inferior de confiança (95 %) e demanda realizada para o
produto Mortadela Tubo no horizonte de forecasting, estratificada para clientes do tipo supermercados.

Período	Limite inferior	Previsto	Limite superior	Realizado
2000/21	12411,5	18090,7	26368,6	16158
2000/22	14573,1	24829,1	42303	21048
2000/23	10852	20841,4	40026,3	16206
2000/24	10709,7	22753,2	48339,8	13782
2000/25	8621,2	20019,8	46489,1	15486
2000/26	7708,4	19398,8	48819,1	19164
2000/27	5877,8	15927,2	43158,7	16722
2000/28	6420,1	18636,5	54098,4	14940

Finalmente, estratificaram-se os dados de demanda do produto Mortadela Tubo para clientes do tipo *outros*. Os dados de demanda encontram-se na Tabela A 9 do Anexo, sendo representados pela linha preta na Figura 29. O comportamento desta série é similar à série na Figura 27, com sazonalidade e componente aleatório mais acentuados. A série também apresenta um aumento moderado na demanda no primeiro semestre de 2000. O modelo selecionado para esta série de dados é um ARIMA $(0,1,1) \times (1,0,0)_{52}$, com informações apresentadas na Tabela 29.

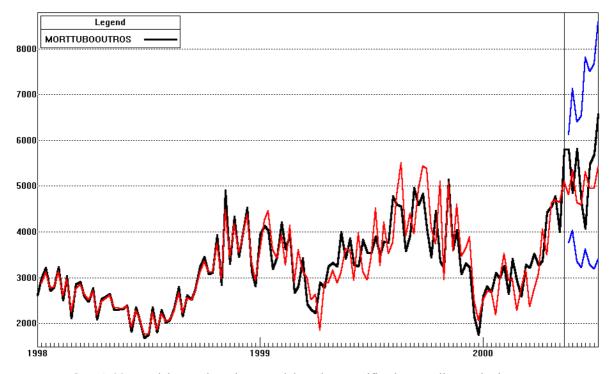


FIGURA 29. Modelagem da série Mortadela Tubo estratificada para clientes do tipo outros.

TABELA 29. Dados do modelo selecionado para o produto Mortadela Tubo, estratificada para clientes do tipo *outros*.

Características da série Modelo escolhido	Não estacionária e sazonal ARIMA $(0,1,1) \times (1,0,0)_{52}, \ \theta_1 = 0,3891e \ \Phi_1 = 0,8954$
Ajuste (R^2)	0,7691
MAPE	0,08637

No modelo na Tabela 29, os dados foram submetidos a uma diferenciação regular. A série, após a primeira diferenciação, tornou-se estacionária, ainda que apresentando uma autocorrelação significativa de *lag* 52, o que justifica a inclusão de um componente sazonal no modelo (Φ_1). Todavia, ao contrário do modelo na Tabela 27, obtém-se previsões para a primeira estação na série; isto ocorre devido a realização de uma única diferenciação regular no modelo ARIMA (0,1,1) × (1,0,0)₅₂.

O modelo ARIMA selecionado oferece um bom ajuste aos dados, com R^2 = 0,7691. As demandas previstas no horizonte do *forecasting* resultaram relativamente próximas às demandas realizadas no período. Estes resultados são apresentados graficamente na Figura 29 e numericamente na Tabela 30.

TABELA 30. Demanda prevista, limites superior e inferior de confiança (95 %) e demanda realizada para o produto Mortadela Tubo no horizonte de *forecasting*, estratificada para clientes do tipo *outros*.

Período	Limite inferior	Previsto	Limite superior	Realizado
2000/21	3766,3	4805	6130	5808
2000/22	4029,1	5359,9	7130,3	4848
2000/23	3362	4638,6	6399,8	5814
2000/24	3221,9	4593,1	6547,8	4644
2000/25	3618,4	5315,2	7807,6	4068
2000/26	3291,2	4970,7	7507,3	5484
2000/27	3192,1	4948,1	7670,3	5700
2000/28	3402,7	5405,9	8588,2	6564

Presunto Cozido

O Presunto Cozido é o terceiro e último produto pertencente à classe A, analisado neste estudo. O perfil de demanda do produto, similar ao da Mortadela Tubo, apresenta sazonalidade e ocorrência de eventos especiais no horizonte de *forecasting*. Os dados de demanda agregada para o produto são apresentados na Tabela A 10 do Anexo. A modelagem sugerida para esta série vem representada na Figura 30. As informações relevantes sobre o modelo selecionado estão apresentadas na Tabela 31. O procedimento de modelagem demandou um tratamento moderado dos valores espúrios.

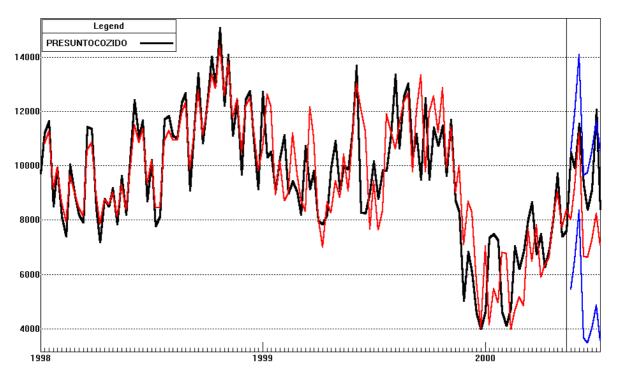


FIGURA 30. Modelagem da série Presunto Cozido, após tratamento dos pontos espúrios.

TABELA 31. Dados do modelo selecionado para o produto Presunto Cozido, após tratamento de valores espúrios.

Características da série	Não estacionária e sazonal
Modelo escolhido	ARIMA $(0,1,1) \times (1,0,0)_{52}$, $\theta_1 = 0,6421$ e $\Phi_1 = 0,8464$
Ajuste (R^2)	0,6757
MAPE	0,1114

Na Figura 30, pode-se observar uma queda acentuada na demanda realizada do produto no segundo semestre de 1999, seguida de uma recuperação no primeiro semestre de 2000. O comportamento da demanda alterou-se significativamente neste período, se comparado aos meses anteriores. Mesmo assim, o melhor modelo, um ARIMA $(0,1,1) \times (1,0,0)_{52}$, ofereceu um bom ajuste, com $R^2 = 0,6757$.

Um comparativo entre os valores de demanda prevista e realizada no horizonte do *forecasting* pode ser visualizado na Tabela 32. Apesar de apresentar alguns valores próximos, o modelo, de uma maneira geral, não foi capaz de prever a tendência ascendente da demanda. O desempenho regular do modelo era previsível, já que a série não manteve seu comportamento esperado ao longo dos anos analisados. As causas do comportamento anômalo ficam claras ao estratificar-se a demanda, na análise que se segue. No futuro, uma vez regularizada a demanda do produto, deve-se considerar a exclusão dos meses finais de 1999 e iniciais de 2000 e sua substituição por previsões.

TABELA 32. Demanda prevista, limites superior e inferior de confiança (95 %) e demanda realizada para a série Presunto Cozido, no horizonte de *forecasting*.

Período	Limite inferior	Previsto	Limite superior	Realizado
2000/21	5455,5	8001,2	10546,9	10497,6
2000/22	6524	9227,9	11931,8	9900
2000/23	8371,8	11225,1	14078,3	11548,8
2000/24	3671,3	6666,5	9661,8	9331,2
2000/25	3493,1	6623,9	9754,7	8395,2
2000/26	4027,4	7288,1	10548,9	9136,8
2000/27	4865,4	8521	11636,7	12074,4
2000/28	3564,4	7070,5	10576,6	8402,4

Na sequência, apresentam-se as análises da série temporal do produto Presunto Cozido com dados estratificados por tipo de cliente: distribuidores, supermercados e outros. Estas estratificações estão apresentadas nas Figuras 31, 32 e 33, respectivamente. Analisando-se estes gráficos, é possível constatar que a queda na demanda observada na Figura 30 foi motivada, essencialmente, por uma redução na demanda em clientes do tipo *supermercados* (ver Figura 32). Segundo a direção da empresa, tal redução foi consequência de uma interrupção no abastecimento do produto a uma grande rede de supermercados, que passou a

adquiri-lo de uma empresa concorrente. A recuperação na demanda do produto passou a ocorrer em meados do primeiro semestre de 2000, com a abertura de novos clientes. O detalhamento da modelagem da demanda estratificada para o produto Presunto Cozido é apresentado a seguir.

Os dados de demanda do produto Presunto Cozido, estratificados para clientes do tipo *distribuidores*, estão apresentadas na Tabela A 11 do Anexo. A modelagem sugerida para os dados está representada na Figura 31, com informações sobre o modelo selecionado dadas na Tabela 33.

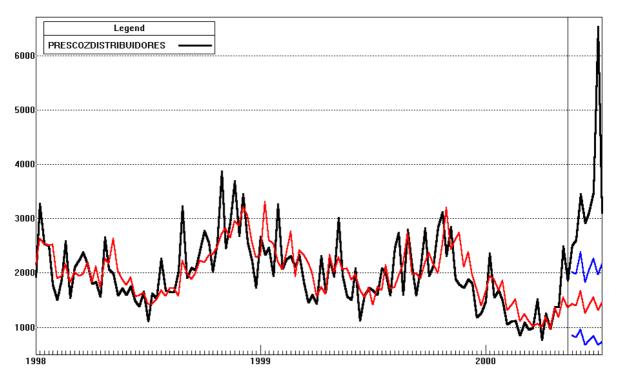


FIGURA 31. Modelagem da série Presunto Cozido estratificada para clientes do tipo distribuidores.

TABELA 33. Dados do modelo selecionado para o produto Presunto Cozido, estratificada para clientes do tipo distribuidores.

Características da série	Tendência e sazonalidade	
Modelo escolhido	Winters multiplicativo, $\alpha = 0.2566$, $\beta = 0$ e $\gamma = 0.5099$	
Ajuste (R^2)	0,5099	
MAPE	0,1662	

O modelo selecionado, uma suavização exponencial de Winters, captura a sazonalidade dos dados com relativa eficiência ($R^2 = 0,5099$). Nos dois anos de demanda realizada utilizados na análise, pode-se observar o efeito multiplicativo evidenciado no modelo, representado pela redução da demanda nos períodos de baixa (em particular, no início do ano 2000). O modelo, todavia, não oferece boas previsões no horizonte de *forecasting*, por não considerar promoções realizadas pelos distribuidores do produto, responsáveis por um incremento substancial em sua demanda. Como consequência, os valores de demanda realizada no horizonte de *forecasting* extrapolaram, em sua totalidade, o limite superior de confiança de predição (ver Tabela 34 e Figura 31).

TABELA 34. Demanda prevista, limites superior e inferior de confiança (95 %) e demanda realizada para o produto Presunto Cozido no horizonte de *forecasting*, estratificada para clientes do tipo *distribuidores*.

Período	Limite inferior	Previsto	Limite superior	Realizado
2000/21	851,3	1432,5	2013,7	2520
2000/22	811	1397,3	1983,5	2613,6
2000/23	963,8	1674,4	2385	3448,8
2000/24	675,1	1250,7	1826,3	2916
2000/25	760,7	1405,8	2050,9	3124,8
2000/26	837,4	1550	2262,5	3492
2000/27	668,2	1320,4	1972,5	6537,6
2000/28	738,1	1446,3	2154,5	3110,4

A demanda do produto Presunto Cozido também foi estratificada e modelada para os clientes do tipo *supermercados* (Tabela A 12 do Anexo, Figura 32 e Tabela 35) e *outros* (Tabela A 13 do Anexo, Figura 33 e Tabela 37). Os modelos obtidos não oferecem, em média, previsões eficientes da demanda do produto no horizonte de *forecasting* (ver Tabelas 36 e 38, respectivamente), o que pode ser explicado pela incidência de eventos extraordinários sobre o processo gerador dos dados.

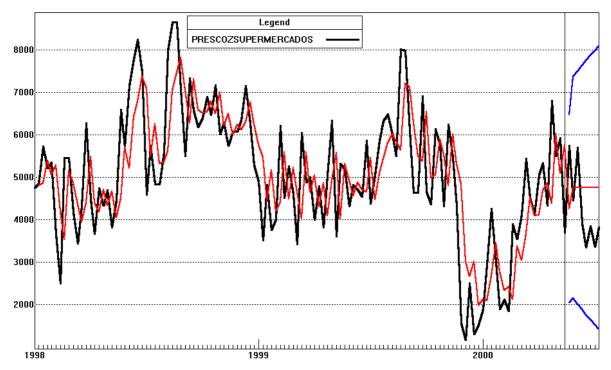


FIGURA 32. Modelagem da série Presunto Cozido estratificada para clientes do tipo supermercados.

TABELA 35. Dados do modelo selecionado para o produto Presunto Cozido, estratificada para clientes do tipo *supermercados*.

Características da série	Não estacionária e não sazonal
Modelo escolhido	ARIMA (0,1,2), $\theta_1 = 0.3710 \text{ e } \theta_2 = 0.2468$
Ajuste (R^2)	0,4701
MAPE	0,2158

TABELA 36. Demanda prevista, limites superior e inferior de confiança (95 %) e demanda realizada para o produto Presunto Cozido no horizonte de *forecasting*, estratificada para clientes do tipo *supermercados*.

Período	Limite inferior	Previsto	Limite superior	Realizado
2000/21	2032,2	4245,5	6458,8	5738,4
2000/22	2139,7	4754,5	7369,3	4442,4
2000/23	2006,2	4754,5	7502,7	5695,2
2000/24	1878,9	4754,5	7630	3924
2000/25	1757,1	4754,5	7751,9	3348
2000/26	1639,9	4754,5	7869	3844,8
2000/27	1527,1	4754,5	7981,9	3355,2
2000/28	1418	4754,5	8090,9	3808,8

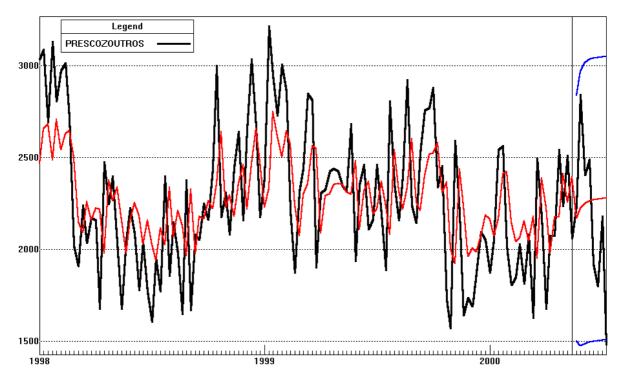


FIGURA 33. Modelagem da série Presunto Cozido estratificada para clientes do tipo outros.

TABELA 37. Dados do modelo selecionado para o produto Presunto Cozido, estratificada para clientes do tipo *outros*.

Características da série Modelo escolhido	Estacionária e não sazonal AR (1), $\phi_1 = 0.5013$
Ajuste (R^2)	0,2506
MAPE	0,1279

TABELA 38. Demanda prevista, limites superior e inferior de confiança (95 %) e demanda realizada para o produto Presunto Cozido no horizonte de *forecasting*, estratificada para clientes do tipo *outros*.

Período	Limite inferior	Previsto	Limite superior	Realizado
2000/21	1501,1	2169,4	2837,8	2239,2
2000/22	1477	2224,7	2972,4	2844
2000/23	1486,1	2252,4	3018,7	2404,8
2000/24	1495,4	2266,3	3037,2	2491,2
2000/25	1501,2	2273,3	3045,3	1922,4
2000/26	1504,4	2276,7	3049,1	1800
2000/27	1506,1	2278,5	3050,9	2181,6
2000/28	1506,9	2279,4	3051,8	1483,2

4.2.2.2 Classe B

Para as 5 famílias de produtos pertencentes a classe B, foram geradas previsões individuais de demanda. As séries analisadas não foram, todavia, estratificadas. A seguir são apresentados os resultados obtidos na previsão, separados por famílias de produtos (ver classificação no início da seção 4.2.1).

Fiambres

A série Fiambres compreende as demandas agregadas dos produtos da primeira família analisada na classe B. O perfil de demanda desta série apresenta valores variando em torno de uma média fixa. Os dados de demanda para esta família de produtos são apresentados na Tabela A 14 do Anexo. A modelagem sugerida para esta série vem representada na Figura 34. As informações relevantes sobre o modelo selecionado estão apresentadas na Tabela 39.

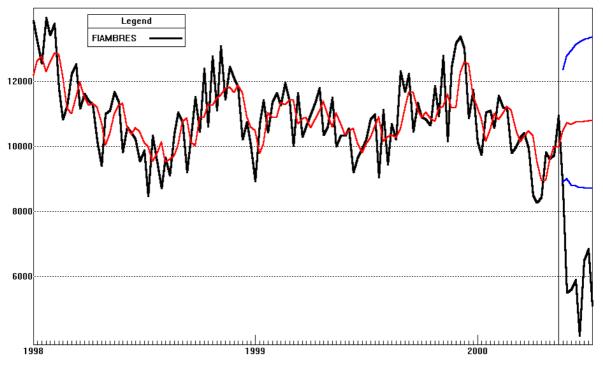


FIGURA 34. Modelagem da série Fiambres após tratamento de valores espúrios.

TABELA 39. Dados do modelo selecionado para a série Fiambres após o tratamento de valores espúrios.

Características da série	Estacionária e não sazonal
Modelo escolhido	AR (2), $\phi_1 = 0.3927$ e $\phi_2 = 0.3455$
Ajuste (R^2)	0,4169
MAPE	0,06752

Na Figura 34, pode-se observar a estacionariedade da série em torno de uma média constante, principalmente durante os dois primeiros anos. O melhor modelo obtido para a série, um AR (2), ofereceu um ajuste com $R^2 = 0.4169$.

Um comparativo entre os valores de demanda prevista e realizada no horizonte do *forecasting* pode ser visualizado na Tabela 40. Além de um ajuste médio, as demandas realizadas tiveram quedas significativas nos períodos correspondentes ao horizonte de *forecasting*. Isto ocorreu em virtude de mudanças nas características de um dos produtos desta série, o que implicou em sua reclassificação, da família Fiambres para a família Apresuntado. Como este produto era responsável por uma grande parcela da demanda nesta série, a sua previsão foi afetada. Assim, para uma análise correta desta série, sugere-se desconsiderar, no futuro, as demandas deste produto.

TABELA 40. Demanda prevista, limites superior e inferior de confiança (95 %) e demanda realizada para a série Fiambres, no horizonte de *forecasting*.

Período	Limite inferior	Previsto	Limite superior	Realizado
2000/21	8909,5	10490,8	12352,8	8650,8
2000/22	9011,5	10740,6	12801,4	5487
2000/23	8801	10680,8	12962,1	5598
2000/24	8787,6	10744,4	13136,9	5883,6
2000/25	8738,5	10748,7	13221,3	4174,8
2000/26	8727,4	10772,5	13296,9	6480,6
2000/27	8714,9	10783,4	13342,7	6842,4
2000/28	8711,5	10795,9	13379	5104,8

• Linguiças

A série Linguiças, segunda família de produtos analisada na classe B, apresenta um perfil de demanda com grande aleatoriedade associada. Os dados de demanda desta série, após o tratamento de valores espúrios, encontram-se na Tabela A 15 do Anexo. A modelagem sugerida para esta série está representada na Figura 35. As informações sobre o modelo selecionado estão dispostas na Tabela 41.

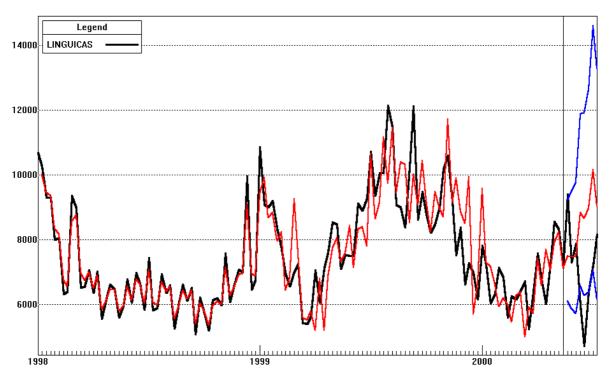


FIGURA 35. Modelagem da série Linguiças após tratamento de valores espúrios.

TABELA 41. Dados do modelo selecionado para a série Linguiças após tratamento de valores espúrios.

Características da série	Não estacionária e sazonal
Modelo escolhido	ARIMA $(0,1,1) \times (1,0,0)$, $\theta_1 = 0,3927$ e $\Phi_1 = 0,3455$
Ajuste (R^2)	0,7288
MAPE	0,07154

Observa-se um bom ajuste do modelo aos dados, em particular no primeiro ano representado na Figura 35. A partir do segundo ano, a série passa a apresentar um forte componente aleatório, prejudicando o ajuste do modelo. Também no segundo ano, a série

passa a apresentar um componente sazonal moderado, não percebido no primeiro ano. Após o tratamento de valores espúrios, o ajuste da série, em termos de R^2 , aumentou de 0,4801 para 0,7288. Mesmo com a melhoria no ajuste, as demandas realizadas extrapolam os limites de confiança em 3 das 8 semanas que compõem o horizonte do *forecasting* (ver Tabela 42). Aparentemente, estas distorções foram devidas a promoções da concorrência, tendo em vista que a empresa não realizou modificações que afetassem a demanda.

TABELA 42. Demanda prevista, limites superior e inferior de confiança (95 %) e demanda realizada para a série Linguiças, no horizonte de *forecasting*.

Período	Limite inferior	Previsto	Limite superior	Realizado
2000/21	6098	7498,4	9220,4	9394,2
2000/22	5869,6	7463,9	9491,3	7299,4
2000/23	5704,7	7470,9	9783,8	7879,2
2000/24	6572,5	8838,5	11885,8	5979,3
2000/25	6278,7	8651,3	11920,6	4719,6
2000/26	6363,4	8968,6	12640,3	6409
2000/27	7051,1	10150,8	14613,1	7216,7
2000/28	6153,3	9037,6	13273,9	8147,5

Mortadela Outros

A série Mortadela Outros é a terceira família de produtos pertencente a classe B analisada neste trabalho. Os dados de demanda desta série, após o tratamento de valores espúrios, encontram-se na Tabela A 16 do Anexo. A modelagem sugerida para a série está representada na Figura 36. As informações sobre o modelo selecionado estão dispostas na Tabela 43.

TABELA 43. Dados do modelo selecionado para a série Mortadela Outros após tratamento de valores espúrios.

Características da série	Tendência e sazonalidade
Modelo escolhido	ARIMA $(0,1,0) \times (0,1,0)$
Ajuste (R^2)	0,7103
MAPE	0,068

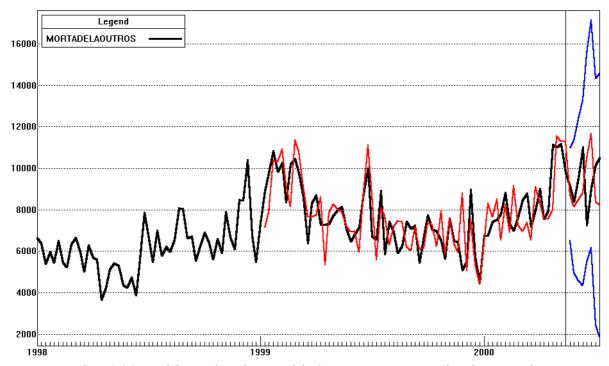


FIGURA 36. Modelagem da série Mortadela Outros após tratamento de valores espúrios.

A série na Figura 36 apresenta uma suave tendência ascendente, além de sazonalidade. Note que o modelo que melhor capturou estas particularidades foi um ARIMA $(0,1,0) \times (0,1,0)$, com componentes de diferenciação, porém sem coeficientes autoregressivos e de média móvel. Note que a modelagem, em virtude da diferenciação sazonal, é feita somente a partir do segundo ano. O modelo obteve um ajuste de $R^2 = 0,7103$, e as demandas ficaram dentro dos limites de confiança em todas as semanas que compõem o horizonte do *forecasting* (ver Tabela 44).

TABELA 44. Demanda prevista, limites superior e inferior de confiança (95 %) e demanda realizada para a série Mortadela Outros, no horizonte de *forecasting*.

Período	Limite inferior	Previsto	Limite superior	Realizado
2000/21	6499,1	8747	10995	9120,5
2000/22	4970,1	8149,1	11328,2	8399
2000/23	4601,6	8495,1	12388,6	9540,3
2000/24	4327,8	8823,6	13319,4	11013
2000/25	5475,1	10501,6	15528,1	7236,3
2000/26	6151,6	11657,9	17164,2	9064
2000/27	2447,2	8394,6	14342	10190
2000/28	1879,5	8237,6	14595,7	10481

Salsichas 3 kg

A série Salsicha 3 kg, quarta família de produtos na classe B analisada neste trabalho, apresenta padrões de tendência e sazonalidade bem definidos. Os valores de demanda desta série encontram-se na Tabela A 17 do Anexo. A modelagem sugerida para esta série está representada na Figura 37. As informações sobre o modelo selecionado estão dispostas na Tabela 45.

FIGURA 37. Modelagem da série Salsichas 3 kg após tratamento de valores espúrios.

TABELA 45. Dados do modelo selecionado para a série Salsichas 3 kg após tratamento de valores espúrios.

Características da série	Tendência e sazonalidade
Modelo escolhido	Winters multiplicativo, $\alpha = 0.6531$, $\beta = 0$ e $\gamma = 0.9842$
Ajuste (R^2)	0,7887
MAPE	0,1051

Na Figura 37, percebe-se uma forte sazonalidade e tendência ascendente presentes na série temporal. Este comportamento foi capturado por um modelo multiplicativo de Winters, o qual ofereceu um bom ajuste ($R^2 = 0.7887$). A demanda extrapolou os limites de confiança

em apenas 1 das 8 semanas que compõem o horizonte do *forecasting* (ver Tabela 46). Este fato ocorreu em virtude de flutuações esporádicas no mercado, como, por exemplo, promoções da concorrência. Observe, também, que as demandas não acompanharam a tendência de crescimento feita pelas previsões.

TABELA 46. Demanda prevista, limites superior e inferior de confiança (95 %) e demanda realizada para a série Salsichas 3 kg, no horizonte de *forecasting*.

Período	Limite inferior	Previsto	Limite superior	Realizado
2000/21	37438,5	51205,5	64972,5	35936,2
2000/22	29489,1	44442,9	59396,6	42624,4
2000/23	30190,3	47686,4	65182,5	47966
2000/24	31761,3	51930,2	72099,1	36391,6
2000/25	28015,8	49792,1	71568,5	37936,4
2000/26	32861,8	57582,6	82303,4	49562,6
2000/27	25507,7	51269,6	77031,5	49681,6
2000/28	22598	49673	76748,6	36668,2

Salsichas Auto-Serviço

A série Salsicha Auto-Serviço, a quinta e última família de produtos na classe B analisada neste trabalho, tem seus valores de demanda apresentados na Tabela A 18 do Anexo. A modelagem sugerida para esta série está representada na Figura 38. As informações sobre o modelo selecionado estão dispostas na Tabela 47.

TABELA 47. Dados do modelo selecionado para a série Salsichas Auto-Serviço após tratamento de valores espúrios.

Características da série	Estacionária e sazonal
Modelo escolhido	Winters multiplicativo, $\alpha = 0.1922$, $\beta = 0$ e $\gamma = 0.6514$
Ajuste (R^2)	0,7281
MAPE	0,04351

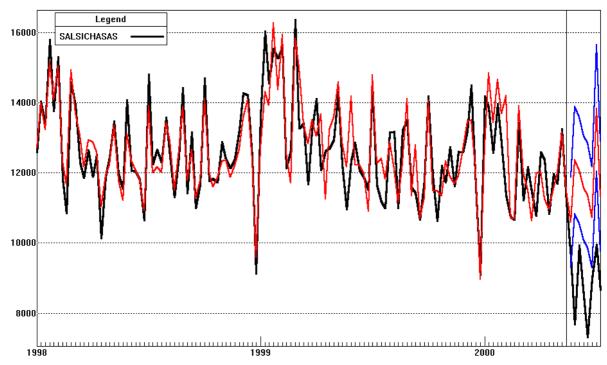


FIGURA 38. Modelagem da série Salsichas Auto-Serviço após tratamento de valores espúrios.

A Figura 38 apresenta uma série com forte componente aleatório e sazonal. O modelo selecionado para a série foi um Winters multiplicativo, com R^2 de 0,7281. Apesar do bom ajuste do modelo aos dados, apenas a primeira demanda realizada ficou dentro dos limites de confiança, nas 8 semanas que compõem o horizonte do *forecasting* (ver Tabela 48). Tal desempenho é justificado pela forte queda na demanda do produto no período de projeção. Os técnicos da empresa não foram capazes de associar causas à referida queda. Aparentemente, estas distorções ocorreram em virtude de flutuações esporádicas no mercado.

TABELA 48. Demanda prevista, limites superior e inferior de confiança (95 %) e demanda realizada para a série Salsichas Auto-Serviço, no horizonte de *forecasting*.

Período	Limite inferior	Previsto	Limite superior	Realizado
2000/21	9300,4	10588,9	11877,5	9605,5
2000/22	10839,9	12364,8	13889,7	7691,9
2000/23	10553,2	12070,7	13588,1	9938,2
2000/24	10080,1	11565,1	13050,1	8499,7
2000/25	9885,3	11373	12860,7	7326,4
2000/26	9288,3	10728,1	12167,9	9009,8
2000/27	12032,5	13840,3	15648,1	9955,2
2000/28	9773,3	11335,1	12896,8	8669,6

4.2.2.3 Classe C

Esta classe agrega 7 famílias de produtos, gerando uma única série temporal. Para esta série, foram feitas previsões de demanda agregada, sem nenhum tipo de estratificação. O perfil de demanda desta série apresenta componentes de sazonalidade e tendência bem definidos, além de um forte componente aleatório. Os dados de demanda são apresentados na Tabela A 19 do Anexo. A modelagem sugerida para esta série vem representada na Figura 39. As informações relevantes sobre o modelo selecionado estão apresentadas na Tabela 49.

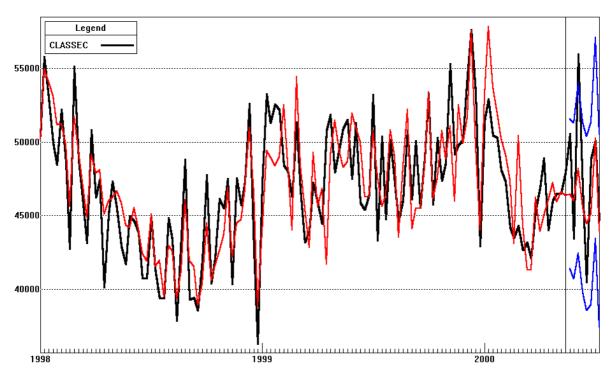


FIGURA 39. Modelagem da série Classe C após tratamento de valores espúrios.

TABELA 49. Dados do modelo selecionado para a série Classe C após tratamento de valores espúrios.

Características da série	Tendência e sazonalidade
Modelo escolhido	Winters multiplicativo, $\alpha = 0.3298$, $\beta = 0$ e $\gamma = 0.5717$
Ajuste (R ²)	0,6467
MAPE	0,04252

Apesar de um bom ajuste do modelo aos dados ($R^2 = 0.6467$), conseguido após tratamento dos valores espúrios, a aleatoriedade voltou a se repetir no período correspondente

a previsão. Mesmo assim, a demanda realizada ficou fora dos limites de confiança em apenas 1 das 8 semanas que compõem o horizonte do *forecasting* (ver Tabela 50). Aparentemente, esta distorção está relacionada à mudança de família de um dos produtos, conforme citado na análise da série de produtos da família dos Fiambres. O produto retirado da série dos Fiambres foi realocado a uma das séries agregadas na classe C, causando um aumento da demanda nos períodos contemplados no horizonte de *forecasting*.

TABELA 50. Demanda prevista, limites superior e inferior de confiança (95 %) e demanda realizada para a série Classe C, no horizonte de *forecasting*.

Período	Limite inferior	Previsto	Limite superior	Realizado
2000/21	41395,3	46471,8	51548,4	50574,4
2000/22	40712,1	46009,6	51307,1	43431,8
2000/23	42446,9	48216,8	53986,8	55970,3
2000/24	39805,1	45580,8	51356,4	46883
2000/25	38560,4	44464,1	50367,9	40486,7
2000/26	38969,4	45145,9	51322,3	48879,2
2000/27	43443,3	50272	57100,6	50065,7
2000/28	37434,4	43979	50523,6	44708,4

4.3 Comentários Finais

Através deste estudo de caso, foi possível aplicar as técnicas de previsão de demanda a um caso real. As séries temporais analisadas foram descritas com graus distintos de eficiência pelos modelos utilizados. Um sumário dos resultados obtidos na modelagem está apresentado na Tabela 51. Na tabela, todas as séries analisadas são classificadas quanto ao ajuste, utilizando o coeficiente de determinação (R^2) como critério na comparação. A classificação utilizada para os modelos foi a seguinte: (i) ajuste bom – modelos apresentando $R^2 \ge 0,60$; (ii) ajuste médio – modelos apresentando R^2 no intervalo [0,60, 0,40]; e (iii) ajuste deficiente – modelos apresentando $R^2 < 0,40$. A definição dos intervalos que formam as categorias seguiu critérios subjetivos, estando baseada principalmente na experiência do analista em problemas de modelagem.

Como pode-se constatar analisando os resultados na seção 4.2.2, a obtenção de um modelo com ajuste bom ou médio aos dados de uma série temporal nem sempre implica na obtenção de uma previsão satisfatória da demanda do produto modelado. Alguns casos foram ressaltados na seção 4.2.2; dentre eles, destacam-se os produtos: Mortadela Fatiada (com demanda estratificada para clientes do tipo *outros*), Salsichas Auto-Serviço, Mortadela Tubo (estratificado para clientes do tipo *outros*), Presunto Cozido (estratificado para clientes do tipo *distribuidores*) e Fiambres. Em todos os casos, com exceção do produto Salsicha Auto-Serviço, eventos anômalos modificaram o comportamento das séries no período correspondente ao horizonte de *forecasting* e prejudicaram as previsões. Considerando que a maioria desses eventos especiais eram do conhecimento do departamento comercial da empresa, a utilização conjunta dos resultados do *forecast* e de análises subjetivas e avaliação gerencial tenderia a melhorar a acurácia das previsões.

Cabe ressaltar que os ajustes na Tabela 51 foram obtidos após a análise e tratamento de valores espúrios nas séries temporais. Este procedimento, sugerido na seção 3.4, apresentou resultados extremamente satisfatórios neste estudo de caso. Além de promover uma análise qualitativa, por parte da gerência da empresa, acerca da evolução temporal da demanda dos produtos por ela comercializados, possibilitou o delineamento de ações de bloqueio à reincidência de eventos anômalos ao processo gerador dos dados (em particular, aqueles que resultam em queda na demanda, como falta de matérias-primas e quebras em equipamentos).

Alguns passos metodológicos apresentados no Capítulo 3 não foram aplicados integralmente ao estudo de caso. É o caso dos itens 3.2.1 (Montagem do Banco de Dados) e 3.6 (Verificação do Sistema). Quanto ao banco de dados, este já encontrava-se disponível na empresa, servindo, em maior ou menor grau, aos propósitos deste trabalho (algumas considerações quanto ao banco de dados são apresentadas na sequência). Quanto a Verificação do Sistema, esta etapa foi parcialmente concluída, mas a análise detalhada dos resultados obtidos, por parte da gerência, ainda requer conclusão. Os demais passos propostos da metodologia foram aplicados ao estudo de caso, encontrando-se reportados nas demais seções deste capítulo.

TABELA 51. Sumário dos ajustes obtidos na modelagem das séries do estudo de caso.

Série Temporal	Aju	ste (R ²)
Mortadela tubo	0,84	
Salsichas 3 kg	0,79	
Mortadela tubo estratificada para supermercados	0,78	
Mortadela tubo estratificada para clientes outros	0,77	
Mortadela fatiada estratificada para clientes outros	0,74	
Linguiças	0,73	Ajuste
Salsichas auto-serviço	0,73	Bom
Mortadela outros	0,71	
Mortadela tubo estratificada para distribuidores	0,70	
Presunto cozido	0,68	
Classe C	0,65	
Mortadela fatiada	0,63	
Mortadela fatiada estratificada para distribuidores	0,56	
Presunto cozido estratificada para distribuidores	0,51	Ajuste
Presunto cozido estratificada para supermercados	0,47	Médio
Fiambres	0,42	
Presunto cozido estratificada para clientes outros	0,25	Ajuste
Mortadela fatiada estratificada para supermercados	0,21	Deficiente

Algumas observações conclusivas, referentes a particularidades da empresa estudada e dificuldades encontradas no estudo, encerram a presente seção de comentários. São elas:

- As informações contidas no banco de dados da empresa nem sempre encontravamse facilmente disponíveis. Assim, a coleta de dados, principalmente no caso dos dados desagregados (isto é, dados sobre os quais era necessário aplicar algum filtro seletivo, como, por exemplo, o tipo de clientes), demandou um tempo maior do que o planejado.
- Não houve resistências quanto a aplicação das técnicas em questão. A cooperação dos envolvidos no estudo pode ser justificada pelo fato dos responsáveis pelo estudo de caso dentro da empresa terem comprovado a eficiência das técnicas em contatos prévios estabelecidos pelo pesquisador.

 A realização do estudo de caso motivou os profissionais envolvidos na empresa a expandirem as técnicas de previsão a outros níveis de desagregação, relativamente aos produtos estudados, bem como a outros setores da empresa.

CAPÍTULO 5

5 Conclusão

A realização desta dissertação de Mestrado permitiu a formulação de algumas conclusões a respeito das técnicas de previsão de demanda, bem como sugestões para possíveis trabalhos futuros.

Apesar de sua evidente importância, técnicas de previsão de demanda eram desconhecidas, na quase totalidade, por um grande número de empresas consultadas durante o desenvolvimento desta dissertação. Este fato, embora expresse a realidade brasileira, não representa o que vem sendo feito em outros países, onde estas técnicas são bem difundidas, inclusive, nos setores de serviços (Winston, 1994).

Através da revisão bibliográfica, buscou-se apresentar, de forma genérica, a maioria dos modelos de previsão de demanda utilizados atualmente. Optou-se por enfatizar, neste trabalho, os modelos de Box-Jenkins e de suavização exponencial. O entendimento destes dois modelos é de grande importância no processo de previsão de demanda, já que eles modelam de forma satisfatória a grande maioria das séries temporais encontradas na prática (Zhou, 1999; Bianchi *et al.*, 1993). Com relação aos demais modelos abordados superficialmente, foram fornecidas referências que permitem seu maior detalhamento.

Alguns dos modelos apresentados, como, por exemplo, os modelos de Box-Jenkins, contêm um embasamento teórico estatístico e matemático relativamente complexo. Neste trabalho, procurou-se apresentá-los de forma simplificada e compreensível para o leitor, utilizando-se, para tanto, de exemplos e ilustrações.

A metodologia proposta para estruturação de um sistema de *forecasting*, apresentada no capítulo 3, pode contribuir de maneira eficiente na otimização do processo de previsão. Como a metodologia foi proposta sobre uma base bastante genérica, alguns ajustes podem ser necessários para sua particularização a aplicações específicas.

O estudo de caso proporcionou uma forte integração entre a Universidade e a empresa em estudo. Além disto, expôs as dificuldades de modelagem de dados reais, em vista da aleatoriedade encontrada em muitas das séries temporais. Esta aleatoriedade pode ser contextualizada, na sua quase totalidade, com a ajuda de técnicos da empresa estudada.

Quanto às naturais resistências à aplicação das técnicas de previsão, observou-se que as mesmas são eliminadas à medida que os resultados das previsões são comparados com as demandas reais. Uma vez compreendendo a aplicabilidade da ferramenta proposta, o corpo técnico da empresa em estudo empenhou-se no projeto de implementação do sistema de previsão de demanda.

Alguns possíveis desenvolvimentos deste trabalho são sugeridos abaixo:

- Utilização da técnica de redes neurais na modelagem de problemas de previsão de demanda. Esta técnica vem apresentando um grande desenvolvimento nos últimos anos, conforme referenciado no capítulo 2 deste trabalho, merecendo um estudo aprofundado.
- Desenvolvimento de modelos avançados, tais quais ARIMA X-12 e regressão com erros dos modelos ARIMA. Devido às particularidades destes modelos, os quais fazem uso de mais de uma técnica de modelagem, é possível capturar, ao menos teoricamente, padrões até então não percebidos nas séries temporais. A validação prática dessa possibilidade constituiria-se em uma linha de pesquisa futura.
- Sistematizar a utilização conjunta de técnicas quantitativas e qualitativas de forecasting. Conforme apresentado no estudo de caso, a avaliação subjetiva dos resultados obtidos pelos modelos matemáticos é essencial para a correta utilização da metodologia proposta.

REFERÊNCIAS BIBLIOGRÁFICAS

- ALTABET, R. The forecaster as a key member of the strategic planning team. *The Journal of Business Forecasting Methods & Systems*, v. 17, n. 3, p. 3-6, Fall 1998.
- ARMSTRONG, J. S. (1999). *Principles of forecasting: a handbook for researchers and practitioners*, Kluwer, Philadelphia.
- AUTOBOX, Ver. 5.0 (1999). *User's guide*. Automatic Forecasting Systems Inc., Hatboro, PA.
- BECK, J. Statistical process control and selectable forecast calendars reduce GE aircraft engines' parts inventory. *Production and Inventory Management Journal*, v. 40, n. 3, p. 62-69, 3° quar. 1999.
- BIANCHI, L., JARRETT, J. E. & HANUMARA, R. C. Forecasting incoming calls to telemarketing centers. *The Journal of Business Forecasting Methods & Systems*, v. 12, n. 2, p. 3-9, Summer 1993.
- BOX, G. & LUCEÑO, A. (1997). *Statistical control by monitoring and feedback adjustment,* John Wiley, New York.
- BOX, G. E. P., JENKINS, G. M. & REINSEL, G. C. (1994). *Time series analysis forecasting and control*, 3^a ed., Prentice Hall, New Jersey.
- CORRÊA, W. R. & PORTUGAL, M. S. Previsão de séries de tempo na presença de mudança estrutural: redes neurais artificiais e modelos estruturais. *Economia Aplicada*, São Paulo, v. 2, n. 3, p. 487-514, 1998.
- DIAS, G. P. P. Proposta de processo de previsão de vendas para bens de consumo. *Anais do XIX ENEGEP CD-ROM*, Rio de Janeiro, 1999.
- ELSAYED, E. A. & BOUCHER, T. O. (1994). *Analysis and control of production systems*, 2^a ed., Prentice Hall, New Jersey.
- FINDLEY, D. F., MONSELL, B. C., BELL, W. R., *et al.* New capabilities and methods of the X-12-ARIMA seasonal-adjustment program. *Journal of Business & Economic Statistics*. Alexandria, v. 16, n. 2, p. 127-177, apr. 1998.
- FORECAST PRO, Ver. 3.0 (1999). *User's manual*, Business Forecast Systems Inc., MA.

- FULLER, W. A. (1996). *Introduction to statistical time series*, 2^a ed., John Wiley, New York.
- HAMILTON, J. D. (1994). Time series analysis, Princeton Univ. Press, Princeton, NJ.
- HILL, T. (1994). Manufacturing strategy: text and cases, 2^a ed., Irwin, Boston, MA.
- JOHNSON, L. A. & MONTGOMERY, D. C. (1974). *Operations research in production planning, scheduling and inventory control,* John Wiley, New York.
- KAHN, K. B. Benchmarking sales forecasting performance measures. *The Journal of Business Forecasting Methods & Systems*, v. 17, n. 4, p. 19-23, Winter 1998/1999.
- KRAJEWSKI, L. J. & RITZMAN, L. P. (1999). *Operations management, strategy and analysis*, 5^a Ed., Addison-Wesley, Reading, MA.
- MAKRIDAKIS, S., ANDERSEN, A., CARBONE, R., *et al.* The accuracy of extrapolation (time-series) methods results of a forecasting competition. *Journal of Forecasting*, v. 1, n. 2, p. 111-153, mar. 1982.
- MAKRIDAKIS, S. & HIBON, M. ARMA models and the Box-Jenkins methodology. *Journal of Forecasting*, v. 16, n. 3, p. 147-163, may 1997.
- MAKRIDAKIS, S., WHEELWRIGHT, S. C. & HYNDMAN, R. J. (1998). Forecasting methods and applications, 3^a ed., John Wiley, New York.
- McINTIRE, R. J. Revision of seasonally adjusted labor force series. *Employment and Earnings*, Washington, v. 45, n. 1, p. 3-8, jan. 1998.
- MENTZER, J. T. & COX Jr., J. E. Familiarity, application, and performance of sales forecasting techniques. *Journal of Forecasting*, v. 3, n. 1, p. 27-37, jan. 1997.
- MICROSOFT ACCESS, Ver. 2.0 (1994). User's guide. Microsoft Co., Redmond, WA.
- MICROSOFT EXCEL, Ver. 97 (1997). User's guide. Microsoft Co., Redmond, WA.
- MONTGOMERY, D. C., JOHNSON, L. A. & GARDINER, J. S. (1990). Forecasting and time series analysis, 2^a ed., McGraw-Hill, Inc., New York.
- MONTGOMERY, D. C. & RUNGER, G. C. (1994). *Applied statistics and probability for engineers*, John Wiley, New York.
- MORETTIN, P. A. & TOLOI, C. M. C. (1987). *Previsões de séries temporais*, 2^a ed., Atual, São Paulo.
- NAHMIAS, S. (1993). Production and operations analysis, 2^a ed., Irwin, Illinois.

- NCSS (1996). *User's manual*. NCSS Co., Kaysville, Utah.
- NELSON, B. L. (1995). *Stochastic modeling analysis & simulation*, McGraw Hill, New York.
- PELLEGRINI, F. R. & FOGLIATTO, F. S. Estudo comparativo entre os modelos de Winters e de Box-Jenkins para previsão de demanda sazonal. *Revista Produto & Produção*, Porto Alegre, v. 4, n. especial, p. 72-85, abr. 2000.
- PFEFFERMANN, D., MORRY, M., WONG, P. Estimation of the variances of X-11 ARIMA seasonally adjusted estimators for a multiplicative decomposition and heteroscedastic variances. *International Journal of Forecasting*, Amsterdam, v. 11, n. 2, p. 271-283, jun. 1995.
- PORTUGAL, M. S. Neural networks versus time series methods: a forecasting exercise. *Revista Brasileira de Economia*, v. 49, n. 4, p. 611-629, 1995.
- QUATTRO PRO, Ver. 9 (1999). User's guide. Corel Co., Ottawa, Canada.
- ROSS, S. M. (1993). *Introduction to probability models*, 5^a ed., Academic Press, San Diego.
- SANDERS, N. R. & MANRODT, K. B. Forecasting practices in US corporations: survey results. *Interfaces*, v. 24, n. 2, p. 92-101, mar. 1994.
- SEBER, G. A. F. (1977). *Linear regression analysis*, John Wiley, New York.
- SHUMWAY, R. H. (1988). *Applied statistical time series analysis*, Prentice Hall, New Jersey.
- SPSS, Ver. 8.0 (1997). User's manual, SPSS Inc., Chicago, Illinois.
- STATGRAPHICS, Ver. 2.1 (1995). *User's manual*, Manugistics Co., Rockville, MD.
- TAFNER, M. A. *O que são redes neurais artificiais*. [online] Disponível na Internet via WWW. URL: http://www.epub.org.br/cm/n05/tecnologia/ma.htm. Arquivo capturado em 09 de maio de 2000.
- THOMAS Jr., G. B. & FINNEY, R. L. (1992). *Calculus and analytic geometry*, 8^a ed., Addison-Wesley, Reading, MA.
- TOMPKINS, J. A., BOZER, Y. A., FRAZELLE, E., et al. (1996). Facilities planning, 2^a ed., John Wiley, New York.

- WINSTON, W. L. (1994). *Operations research applications and algorithms*, 3^a ed., Duxbury Press, Belmont, CA.
- WINTERS, P. R. Forecasting sales by exponentially weighted moving averages. *Management Science*, v. 6, n. 3, p. 324-342, 1960.
- ZHOU, W. Integration of different forecasting models. *The Journal of Business Forecasting Methods & Systems*, v. 18, n. 3, p. 26-29, Fall 1999.

ANEXO

Este anexo contém as demandas semanais dos produtos (ou famílias de produtos) que fazem parte do estudo de caso. Estas demandas representam o peso dos mesmos, em kg, medidos no período compreendido entre a primeira semana de 1998 e a vigésima de 2000 (124 observações).

TABELA A 1. Demanda da série Mortadela Fatiada antes da remoção de pontos espúrios.

t	Z_t	t	z_t	t	z_t	t	\boldsymbol{z}_t	t	Z_t	t	z_t	t	z_t
1	23118,2	19	21568,8	37	15582,6	55	24634,6	73	21403,8	91	20519,4	109	21846
2	22288,2	20	17754	38	20129,4	56	21791,5	74	14850	92	18631,8	110	24083,4
3	22664,4	21	22116,6	39	17584,9	57	19813,2	75	19549,2	93	17318,4	111	16612,2
4	19152,6	22	17429,4	40	19918,6	58	19000,8	76	17872,8	94	17351,4	112	21034,2
5	20697,6	23	23581,8	41	18024,6	59	17838,8	77	16500	95	18024,6	113	19041
6	22078,8	24	16883,8	42	15701,4	60	16038	78	19631,7	96	17239,2	114	18381
7	19749,3	25	19807,2	43	24466,2	61	18229,2	79	14572,2	97	27337,2	115	24340,8
8	18077,4	26	13438,4	44	17094	62	20842,8	80	19285,2	98	17661,6	116	17067,6
9	21734,8	27	18788,6	45	17175,9	63	14749,4	81	12929,4	99	19912,2	117	17344,8
10	19430,4	28	18988,2	46	18587,2	64	13668,6	82	18757,2	100	21641,4	118	19225,8
11	19186,2	29	18084	47	20941,8	65	17503,2	83	14876,4	101	23377,2	119	21773,4
12	19286,3	30	17503,2	48	17067,6	66	19310,5	84	20354,4	102	19126,8	120	17536,2
13	17689,1	31	15562,8	49	21120	67	18288,4	85	22960	103	20288,4	121	24789,6
14	21938,4	32	18387,6	50	20877,8	68	18638,4	86	17391	104	16922,4	122	13266
15	14950,2	33	14401,2	51	19178,4	69	19080,6	87	15952,2	105	21978	123	22704
16	17860,8	34	17305,2	52	12456,1	70	17305,2	88	18136,8	106	22182,6	124	20110,2
17	18599,9	35	18961,8	53	24103,2	71	18540,5	89	20737,2	107	19674,6		
18	19060,8	36	16909,2	54	23179,2	72	18539,4	90	15879,6	108	23106,6		

TABELA A 2. Demanda da série Mortadela Fatiada após a remoção de pontos espúrios.

t	\boldsymbol{z}_t	t	\boldsymbol{z}_t	t	\boldsymbol{z}_{t}								
1	23118,2	19	21568,8	37	15582,6	55	24634,6	73	21403,8	91	20519,4	109	21846
2	22288,2	20	17754	38	20129,4	56	21791,5	74	14850	92	18631,8	110	20551,2
3	22664,4	21	22116,6	39	17584,9	57	19813,2	75	19549,2	93	17318,4	111	16612,2
4	19152,6	22	17429,4	40	19918,6	58	19000,8	76	17872,8	94	17351,4	112	17709,4
5	20697,6	23	23581,8	41	18024,6	59	17838,8	77	16500	95	18024,6	113	19041
6	22078,8	24	16883,8	42	15701,4	60	16038	78	15741,4	96	17239,2	114	18381
7	19749,3	25	19807,2	43	20134	61	18229,2	79	17906,2	97	18739,2	115	17846,6
8	18077,4	26	17789,6	44	17094	62	20842,8	80	19285,2	98	17661,6	116	17067,6
9	21734,8	27	18788,6	45	17175,9	63	18749,5	81	17217,8	99	19912,2	117	17344,8
10	19430,4	28	18988,2	46	18587,2	64	17809	82	18757,2	100	18151,8	118	19225,8
11	19186,2	29	18084	47	20941,8	65	17503,2	83	14876,4	101	23377,2	119	17806
12	19286,3	30	17503,2	48	17067,6	66	19310,5	84	20354,4	102	19126,8	120	17536,2
13	17689,1	31	15562,8	49	21120	67	18288,4	85	16634,2	103	20288,4	121	19772
14	21938,4	32	18387,6	50	20877,8	68	18638,4	86	17391	104	16922,4	122	18539,8
15	18340,7	33	18419,1	51	19178,4	69	19080,6	87	15952,2	105	21978	123	22704
16	17860,8	34	17305,2	52	16287,9	70	17305,2	88	18136,8	106	22182,6	124	20110,2
17	18599,9	35	18961,8	53	24103,2	71	18540,5	89	17067,9	107	19674,6		
18	19060,8	36	16909,2	54	23179,2	72	18539,4	90	18872,6	108	23106,6		

TABELA A 3. Demanda da série Mortadela Fatiada estratificada para clientes do tipo *distribuidores* após a remoção de pontos espúrios.

t	\boldsymbol{z}_t	t	\boldsymbol{z}_t	t	\boldsymbol{z}_t								
1	19725,8	19	18869,4	37	12744,6	55	18328,2	73	16909,2	91	16645,2	109	16434
2	18895,8	20	15074,4	38	17225,4	56	15648,5	74	10896,6	92	14104,2	110	19628,4
3	19074	21	18532,8	39	14519,2	57	15972	75	14579,4	93	14493,6	111	12302,4
4	16354,8	22	14209,8	40	16579	58	15153,6	76	14810,4	94	12388,2	112	16130,4
5	17536,2	23	19918,8	41	14678,4	59	13562	77	12625,8	95	14242,8	113	14493,6
6	19179,6	24	13596	42	12949,2	60	12566,4	78	16612,2	96	12724,8	114	13285,8
7	16440,6	25	16296	43	21047,4	61	14506,8	79	10995,6	97	22882,2	115	18473,4
8	15140,4	26	10923,8	44	13662	62	18090,6	80	15859,8	98	13411,2	116	12579,6
9	18546	27	15536,4	45	14190	63	10144,2	81	9748,2	99	15747,6	117	13292,4
10	16651,8	28	16130,4	46	15497,6	64	10461	82	15074,4	100	17443,8	118	15087,6
11	16684,8	29	15312	47	17641,8	65	13741,2	83	10909,8	101	19668	119	17602,2
12	16737,6	30	14216,4	48	12962,4	66	14196,6	84	16460,4	102	13272,6	120	13794
13	13912,8	31	12500,4	49	17575,8	67	13483,6	85	19871,2	103	15285,6	121	20493
14	18585,6	32	15714,6	50	16453,8	68	14784	86	13464	104	13338,6	122	8098,2
15	11957,4	33	11979	51	15793,8	69	15503,4	87	12454,2	105	17919	123	17740,8
16	14968,8	34	14704,8	52	9669	70	12817,2	88	14150,4	106	17740,8	124	16592,4
17	15490,2	35	15404,4	53	17661,6	71	14929,2	89	16249,2	107	14929,2		
18	16302	36	14328,6	54	14368,2	72	13972,2	90	12625,8	108	17820		

TABELA A 4. Demanda da série Mortadela Fatiada estratificada para clientes do tipo *supermercados* após a remoção de pontos espúrios.

t	Z_t	t	Z_t	t	\boldsymbol{z}_{t}	t	\boldsymbol{z}_{t}	t	\boldsymbol{z}_t	t	\boldsymbol{z}_t	t	\boldsymbol{z}_t
1	514,8	19	422,4	37	666,6	55	646,8	73	455,4	91	633,6	109	765,6
2	561	20	554,4	38	495	56	726	74	627	92	1141,8	110	653,4
3	534,6	21	422,4	39	726	57	891	75	1023	93	376,2	111	495
4	844,8	22	500,4	40	580,8	58	811,8	76	613,8	94	1161,6	112	719,4
5	547,8	23	495	41	699,6	59	528	77	435,6	95	745,8	113	732,6
6	490,2	24	541,2	42	415,8	60	574,2	78	732,6	96	1148,4	114	1009,8
7	580,8	25	435,6	43	455,4	61	726	79	660	97	554,4	115	719,4
8	422,4	26	534,6	44	574,2	62	402,6	80	587,4	98	627	116	1339,8
9	844,8	27	422,4	45	429	63	1226	81	376,2	99	633,6	117	547,8
10	567,6	28	567,6	46	508,2	64	613,8	82	719,4	100	666,6	118	943,8
11	600,6	29	382,8	47	541,2	65	567,6	83	389,4	101	554,4	119	726
12	415,8	30	435,6	48	653,4	66	706,2	84	679,8	102	673,2	120	323,4
13	699,6	31	435,6	49	706,2	67	508,2	85	765,6	103	726	121	534,6
14	514,8	32	587,4	50	1300,2	68	435,6	86	640,2	104	455,4	122	1452
15	508,2	33	541,2	51	640,2	69	422,4	87	547,8	105	514,8	123	686,4
16	462	34	468,6	52	415,8	70	646,8	88	580,8	106	514,8	124	699,6
17	554,4	35	660	53	587,4	71	435,6	89	1148,4	107	574,2		
18	475,2	36	462	54	640,2	72	1069,2	90	640,2	108	844,8		

TABELA A 5. Demanda da série Mortadela Fatiada estratificada para clientes do tipo *outros* após a remoção de pontos espúrios.

t	Z_t	t	Z_t	t	\boldsymbol{z}_t								
1	2877,6	19	2277	37	2171,4	55	3019,6	73	3564	91	3240,6	109	4646,4
2	2831,4	20	2125,2	38	2409	56	3423,8	74	2316,6	92	3385,8	110	3801,6
3	3055,8	21	3161,4	39	2339,7	57	2950,2	75	3946,8	93	2448,6	111	3814,8
4	1953	22	2719,2	40	2758,8	58	3035,4	76	2448,6	94	3801,6	112	4184,4
5	2613,6	23	3168	41	2646,6	59	3748,8	77	3438,6	95	3036	113	3814,8
6	2409	24	2746,6	42	2336,4	60	2897,4	78	2286,9	96	3366	114	4085,4
7	2727,9	25	3075,6	43	2963,4	61	2996,4	79	2916,6	97	3900,6	115	5148
8	2514,6	26	1980	44	2857,8	62	2349,6	80	2838	98	3623,4	116	3148,2
9	2344	27	2829,8	45	2556,9	63	3379,2	81	2805	99	3531	117	3504,6
10	2211	28	2290,2	46	2581,4	64	2593,8	82	2963,4	100	3531	118	3194,4
11	1900,8	29	2389,2	47	2758,8	65	2527,8	83	3577,2	101	3154,8	119	3445,2
12	2132,9	30	2851,2	48	3451,8	66	2316,6	84	3214,2	102	5181	120	3418,8
13	3076,7	31	2626,8	49	2838	67	3570,6	85	2323,2	103	4276,8	121	3762
14	2838	32	2085,6	50	3123,8	68	2679,6	86	3286,8	104	3128,4	122	3715,8
15	2484,6	33	1881	51	2744,4	69	2574	87	2950,2	105	3544,2	123	4276,8
16	2430	34	2131,8	52	2371,3	70	3148,2	88	3405,6	106	3927	124	2818,2
17	2555,3	35	2897,4	53	3663	71	3161,4	89	3339,6	107	4171,2		
18	2283,6	36	2118,6	54	3755,4	72	2673	90	2613,6	108	4441,8		

TABELA A 6. Demanda da série Mortadela Tubo após a remoção de pontos espúrios.

t	Z_t	t	\boldsymbol{z}_t	t	\boldsymbol{z}_t	t	\boldsymbol{z}_t	t	\boldsymbol{z}_t	t	\boldsymbol{z}_t	t	\boldsymbol{z}_t
1	27444	19	18114	37	19242	55	26622	73	27804	91	42894	109	31656
2	22944	20	17634	38	20979	56	23724	74	25284	92	40080	110	31392
3	24120	21	14845,2	39	23311	57	24162	75	27528	93	28692	111	29964
4	26796	22	16752	40	23652	58	24348	76	24312	94	21588	112	29970
5	28761	23	16992	41	25602	59	19362	77	19560	95	22470	113	27282
6	23382	24	12866,8	42	25722	60	23076	78	22386	96	25482	114	33060
7	21036	25	14073	43	26868	61	18894	79	20622	97	40290	115	34236
8	20535	26	13653,6	44	26247,6	62	21096	80	26443	98	20130	116	33084
9	19434	27	13224	45	33096	63	20838	81	28992	99	20250	117	28458
10	24642	28	16626	46	25634	64	17574	82	25554	100	22032	118	30486
11	25170	29	15570	47	32850	65	16476	83	27810	101	22122	119	39276
12	23211	30	16014	48	30669	66	21600	84	46869,6	102	30450	120	27444
13	20562	31	18360,4	49	31881	67	19002	85	38040	103	20832	121	40032
14	20958	32	23676	50	30894	68	22380	86	33210	104	14118	122	33750
15	14478	33	16176	51	27822	69	23478	87	32274	105	22452	123	43854
16	16290	34	23556	52	19560	70	20202	88	33972	106	25266	124	40710
17	16146	35	20694	53	30630	71	26460	89	33864	107	29136		
18	16644	36	24504	54	29061,7	72	22242	90	27648	108	30012		

TABELA A 7. Demanda da série Mortadela Tubo estratificada para clientes do tipo *distribuidores* após a remoção de pontos espúrios.

t	Z_t	t	\boldsymbol{z}_t	t	\boldsymbol{z}_t	t	\boldsymbol{z}_t	t	Z_t	t	\boldsymbol{z}_{t}	t	$\boldsymbol{\mathcal{Z}}_t$
1	12792	19	8568	37	7398	55	12564	73	11316	91	15372	109	10056
2	9036	20	7512	38	8670	56	9678	74	8712	92	18186	110	11322
3	8700	21	6217,2	39	9553	57	12228	75	13578	93	8526	111	10662
4	10278	22	6312	40	8952	58	10854	76	9420	94	9870	112	12762
5	10830	23	8136	41	12894	59	9828	77	8868	95	9096	113	11514
6	8946	24	4842	42	9234	60	11262	78	8910	96	9876	114	11748
7	7266	25	5682	43	11514	61	9222	79	8940	97	17940	115	10074
8	8286	26	4998	44	11814	62	10602	80	13008	98	8172	116	12186
9	6696	27	5244	45	14394	63	10410	81	11988	99	7296	117	9786
10	11556	28	7200	46	11160	64	8460	82	7512	100	6810	118	9744
11	10800	29	6942	47	13950	65	7602	83	10860	101	6948	119	13734
12	10104	30	5586	48	12216	66	10500	84	11982	102	13392	120	9900
13	7728	31	7554	49	14031	67	7890	85	14400	103	7410	121	18270
14	9546	32	8784	50	11658	68	8724	86	10866	104	5400	122	11352
15	6072	33	6378	51	10392	69	9102	87	13950	105	8334	123	19068
16	7044	34	6858	52	8994	70	6930	88	14682	106	9228	124	15726
17	7254	35	8052	53	13830	71	11472	89	14916	107	11076		
18	6876	36	11250	54	13014	72	7596	90	10788	108	11322		

TABELA A 8. Demanda da série Mortadela Tubo estratificada para clientes do tipo *supermercados* após a remoção de pontos espúrios.

t	\boldsymbol{z}_t	t	\boldsymbol{z}_{t}	t	\boldsymbol{Z}_t	t	\boldsymbol{z}_t	t	\boldsymbol{z}_t	t	\boldsymbol{z}_t	t	$\boldsymbol{\mathcal{Z}}_t$
1	12030	19	7248	37	9330	55	9768	73	12336	91	22686	109	18606
2	10920	20	7806	38	9552	56	10602	74	12702	92	17802	110	16806
3	12204	21	6306	39	10524	57	8460	75	10662	93	16722	111	16656
4	13800	22	8046	40	11238	58	9282	76	11640	94	8886	112	13800
5	15138	23	7038	41	9630	59	5904	77	6864	95	10020	113	12834
6	11208	24	5670	42	11742	60	8892	78	9924	96	11286	114	18726
7	11262	25	6318	43	11430	61	7002	79	8148	97	17208	115	19464
8	9216	26	6966	44	11592	62	7686	80	9534	98	8352	116	17682
9	10626	27	6210	45	13800	63	7002	81	13512	99	10638	117	15150
10	10236	28	7068	46	11178	64	6696	82	14244	100	13068	118	17466
11	11460	29	6816	47	14568	65	6324	83	11190	101	12780	119	20820
12	10506	30	8130	48	15000	66	8208	84	31965,6	102	13830	120	14826
13	10356	31	8784	49	12582	67	7578	85	19032	103	11250	121	17208
14	8646	32	11754	50	14706	68	8502	86	17778	104	6972	122	17610
15	6324	33	7464	51	14262	69	9288	87	14742	105	11526	123	19356
16	6714	34	13902	52	7758	70	9282	88	15354	106	13218	124	19176
17	6978	35	10482	53	11790	71	11016	89	13980	107	14136		
18	7122	36	10632	54	9409,3	72	9810	90	12276	108	15576		

TABELA A 9. Demanda da série Mortadela Tubo estratificada para clientes do tipo *outros* após a remoção de pontos espúrios.

t	Z_t	t	Z_t	t	\boldsymbol{z}_t	t	Z_t	t	Z_t	t	Z_t	t	Z_t
1	2622	19	2298	37	2514	55	4044	73	3420	91	4836	109	2994
2	2988	20	2316	38	2757	56	3192	74	3864	92	4092	110	3264
3	3216	21	2322	39	3234	57	3474	75	3288	93	3444	111	2646
4	2718	22	2394	40	3462	58	4212	76	3252	94	2832	112	3408
5	2793	23	1818	41	3078	59	3630	77	3828	95	3354	113	2934
6	3228	24	2354,8	42	4746	60	2922	78	3552	96	4320	114	2586
7	2508	25	2073	43	3924	61	2670	79	3534	97	5142	115	4698
8	3033	26	1689,6	44	2841,6	62	2808	80	3901	98	3606	116	3216
9	2112	27	1770	45	4902	63	3426	81	3492	99	2316	117	3522
10	2850	28	2358	46	3296	64	2418	82	3798	100	2154	118	3276
11	2910	29	1812	47	4332	65	2310	83	5760	101	2394	119	4722
12	2601	30	2298	48	3453	66	2226	84	2922	102	3228	120	2718
13	2478	31	2022,4	49	5268	67	2898	85	4608	103	2172	121	4554
14	2766	32	3138	50	4530	68	4578	86	4566	104	1746	122	4788
15	2082	33	2334	51	3168	69	4824	87	3582	105	2592	123	5430
16	2532	34	2796	52	2808	70	3336	88	3936	106	2820	124	5808
17	1914	35	2160	53	3924	71	3252	89	4968	107	3924		
18	2646	36	2622	54	5888,4	72	3996	90	4584	108	3114		

TABELA A 10. Demanda da série Presunto Cozido após a remoção de pontos espúrios.

t	\boldsymbol{z}_t	t	\boldsymbol{z}_t	t	\boldsymbol{z}_t								
1	9727,2	19	7848	37	11498,4	55	10526,4	73	9871,2	91	12493	109	4636,8
2	11203,2	20	13924,8	38	13393	56	9072	74	7855,2	92	9489,6	110	4118,4
3	11649,6	21	8197,2	39	10825,8	57	10288,8	75	13680	93	8841,6	111	4802,4
4	8503,6	22	14099,4	40	12279,6	58	11138,4	76	8294,4	94	10734,8	112	7041,6
5	9928,8	23	12412,8	41	14011,2	59	8978,4	77	8244	95	8791,2	113	6206,4
6	8140,2	24	11037,6	42	12924	60	9439,2	78	9028,8	96	7185,6	114	6832,8
7	7408,8	25	11660,4	43	15080,4	61	9028,8	79	10166,4	97	11685,6	115	8028
8	10044	26	8683,2	44	12197,8	62	8193,6	80	11102,4	98	3974,4	116	8668,8
9	9014,4	27	7308	45	10814,6	63	10720,8	81	9828	99	4996,8	117	6746,4
10	8200,8	28	7767	46	11109,6	64	9145	82	9813,6	100	5025,6	118	7495,2
11	7905,6	29	8150,4	47	12398,4	65	5918	83	11152,8	101	3520,8	119	8647,2
12	11433	30	11707	48	9684	66	7991,8	84	13356,8	102	6091,2	120	6912
13	11368,8	31	11836,8	49	12451,2	67	10400,6	85	10634,4	103	4579,2	121	13514,4
14	8445,6	32	11120,4	50	12751,2	68	8215,2	86	12528	104	3988,8	122	4730,4
15	7178,4	33	10995	51	8496	69	9943,2	87	13024,8	105	4636,8	123	10929,6
16	8784	34	12334,2	52	6670,8	70	10915,2	88	10353,6	106	7344	124	7603,2
17	8506,8	35	12679,2	53	12729,7	71	9064,8	89	8740,8	107	7495,2		
18	9172,8	36	9079,2	54	10317,2	72	10000,8	90	9489,6	108	7257,6		

TABELA A 11. Demanda da série Presunto Cozido estratificada para clientes do tipo *distribuidores* após a remoção de pontos espúrios.

t	Z_t	t	\boldsymbol{z}_t	t	\boldsymbol{z}_t	t	Z_t	t	\boldsymbol{Z}_t	t	\boldsymbol{z}_{t}	t	\boldsymbol{z}_t
1	1936,8	19	1994,4	37	2095,2	55	2462,4	73	1576,8	91	2822,4	109	734,4
2	3276	20	1591,2	38	2052	56	1944	74	1504,8	92	1951,2	110	194,4
3	2534,4	21	1720,8	39	2404,8	57	3268,8	75	2088	93	2145,6	111	1108,8
4	2505,6	22	1598,4	40	2772	58	2073,6	76	1123,2	94	2851,2	112	1123,2
5	1785,6	23	950,4	41	2563,2	59	2253,6	77	1591,2	95	1303,2	113	856,8
6	1504,8	24	1483,2	42	2023,2	60	2311,2	78	1000,8	96	1310,4	114	633,6
7	1900,8	25	1382,4	43	5738,4	61	2109,6	79	3333,6	97	2851,2	115	964,8
8	2584,8	26	1663,2	44	3873,6	62	2332,8	80	1605,6	98	576	116	1656
9	1540,8	27	1116	45	2455,2	63	1837	81	2088	99	1792,8	117	1519,2
10	2116,8	28	1620	46	2930,4	64	1461,6	82	684	100	1735,2	118	770,4
11	2239,2	29	1533,6	47	3686,4	65	1605,6	83	1591,2	101	662,4	119	1252,8
12	2383,2	30	2260,8	48	1454,4	66	1432,8	84	2469,6	102	1814,4	120	504
13	2174,4	31	1684,8	49	3448,8	67	2318,2	85	2736	103	1188	121	4168,8
14	1800	32	1663,2	50	2570,4	68	1648,8	86	1598,4	104	1267,2	122	633,6
15	1836	33	1649	51	2217,6	69	2275,2	87	2800,8	105	871,2	123	2491,2
16	1569,6	34	2044,8	52	1728	70	1929,6	88	2109,6	106	2361,6	124	1857,6
17	2656,8	35	3232,8	53	2671,3	71	3016,8	89	1584	107	705,6		
18	2080,8	36	1908	54	2339,6	72	1972,8	90	2088	108	1684,8		

TABELA A 12. Demanda da série Presunto Cozido estratificada para clientes do tipo *supermercados* após a remoção de pontos espúrios.

t	Z_t	t	\boldsymbol{z}_t	t	Z_t	t	Z_t	t	Z_t	t	Z_t	t	Z_t
1	4752	19	3815,6	37	7322,4	55	4816,8	73	5198,4	91	6897,6	109	1879,2
2	4838,4	20	10656	38	9288	56	3758,4	74	4305,6	92	4658,4	110	2116,8
3	5716,8	21	4428	39	6170,4	57	4010,4	75	9237,6	93	4356	111	1843,2
4	2865,6	22	10274,4	40	6408	58	6199,2	76	4708,8	94	6134	112	3888
5	5335,2	23	9374,4	41	6890,4	59	4514,4	77	4543,2	95	5760	113	3535,2
6	3657,6	24	7776	42	8697,6	60	5256	78	5860,8	96	4305,6	114	4118,4
7	2491,2	25	8236,8	43	7164	61	4600,8	79	4370,4	97	6242,4	115	5436
8	5443,2	26	5248,8	44	6012	62	3420	80	7300,8	98	2109,6	116	4514,4
9	5450,4	27	4586,4	45	6278,6	63	6033,6	81	5853,6	99	1562,4	117	4132,8
10	4176	28	2930,4	46	5731,2	64	4867,2	82	6321,6	100	1555,2	118	5047,2
11	3427,2	29	4845,6	47	6069,6	65	2412	83	6480	101	1166,4	119	5320,8
12	7012,8	30	7048,8	48	6069,6	66	3996	84	8726,4	102	2491,2	120	4334,4
13	6264	31	8294,4	49	6345,6	67	4780,8	85	5500,8	103	1296	121	6804
14	4485,6	32	7981,2	50	7142,4	68	3816	86	8006,4	104	1526,4	122	3009,6
15	3664,8	33	8654,8	51	3607,2	69	5032,8	87	7984,8	105	1893,6	123	5925,6
16	4737,6	34	8640	52	2764,8	70	6321,6	88	6098,4	106	2930,4	124	3686,4
17	4320	35	7070,4	53	4896	71	3592,8	89	4629,6	107	4248		
18	4694,4	36	5500,8	54	3506,4	72	5306,4	90	4644	108	3009,6		

TABELA A 13. Demanda da série Presunto Cozido estratificada para clientes do tipo *outros* após a remoção de pontos espúrios.

t	\boldsymbol{z}_t	t	\boldsymbol{z}_t	t	\boldsymbol{z}_t								
1	3038,4	19	2037,6	37	2080,8	55	2952	73	2685,6	91	2773	109	2023,2
2	3088,8	20	1677,6	38	2053	56	2728,8	74	1936,8	92	2880	110	1807,2
3	3398,4	21	2048,4	39	2250,6	57	3009,6	75	2354,4	93	2340	111	1850,4
4	3132,4	22	2226,6	40	3099,6	58	2865,6	76	2462,4	94	1749,6	112	2030,4
5	2808	23	2088	41	4557,6	59	2210,4	77	2109,6	95	1728	113	1814,4
6	2977,8	24	1778,4	42	2203,2	60	1872	78	2167,2	96	1569,6	114	2080,8
7	3016,8	25	2041,2	43	2178	61	2318,4	79	2462,4	97	2592	115	1627,2
8	2016	26	1771,2	44	2312,2	62	2440,8	80	2196	98	1288,8	116	2498,4
9	2023,2	27	1605,6	45	2080,8	63	2850,2	81	1886,4	99	1641,6	117	1094,4
10	1908	28	3216,6	46	2448	64	2816,2	82	2808	100	1735,2	118	1677,6
11	2239,2	29	1771,2	47	2642,4	65	1900,4	83	3081,6	101	1692	119	2073,6
12	2037	30	2397,4	48	2160	66	1612,6	84	2160,8	102	1872	120	2073,6
13	2930,4	31	1857,6	49	2656,8	67	2329,6	85	2397,6	103	2095,2	121	2541,6
14	2160	32	1476	50	3038,4	68	2426,4	86	2923,2	104	1195,2	122	1087,2
15	1677,6	33	691,2	51	2671,2	69	2440,8	87	2239,2	105	1872	123	2512,8
16	2476,8	34	1649,4	52	2178	70	2426,4	88	2145,6	106	2052	124	2059,2
17	1530	35	2376	53	3988,8	71	2347,2	89	2527,2	107	2541,6		
18	2397,6	36	1670,4	54	3218,4	72	2318,4	90	2757,6	108	2563,2		

TABELA A 14. Demanda da série Fiambres após a remoção de pontos espúrios.

t	\boldsymbol{z}_t	t	\boldsymbol{z}_t	t	\boldsymbol{z}_t								
1	13862,6	19	11103	37	9203	55	9131	73	10337,2	91	14711,4	109	10569,6
2	13245,6	20	11689,8	38	8364	56	12781,3	74	10332,6	92	13047,6	110	11563,8
3	15894,6	21	11363,8	39	11523,7	57	11383,8	75	12734	93	10831,8	111	11209,8
4	13978	22	9822	40	10451,4	58	11640,7	76	9196,2	94	10662,6	112	11184,6
5	18058,8	23	10587,6	41	12395,4	59	14051	77	9684,6	95	11863,8	113	9802,8
6	13792,8	24	8092,8	42	10620,2	60	11954,3	78	9940,7	96	10935	114	9977,4
7	11792,4	25	10227,6	43	12781,8	61	14090,4	79	12634,8	97	12790,8	115	10294,2
8	10836,9	26	7663,2	44	11104,8	62	10013,8	80	8446,8	98	10149,6	116	7860,6
9	14654,4	27	9986,2	45	13100,8	63	11646	81	13668	99	12434,4	117	7636,8
10	12260,4	28	8480,4	46	14188,8	64	10303,9	82	9051,6	100	13185,4	118	8490,6
11	12540	29	10343,4	47	18384,6	65	10640	83	11125,8	101	13395	119	8280,6
12	11168	30	9544,1	48	12111	66	11000,6	84	9444,6	102	13037,4	120	8437,2
13	16030,8	31	8700,6	49	10819,8	67	11357,4	85	13325,4	103	10865,4	121	9814,8
14	11401,2	32	11844	50	10220,7	68	11800,6	86	10209,6	104	7704	122	7771,8
15	11308,4	33	9112,8	51	8341,8	69	10347,1	87	12319,2	105	12619,8	123	12514,8
16	10181,4	34	10395,5	52	7025,6	70	10643,9	88	11685	106	9750,6	124	10950,6
17	9406,1	35	11056,2	53	12307,8	71	11506,2	89	12238,2	107	11043		
18	11020,8	36	8758,2	54	10702	72	9996	90	10446,6	108	11104,2		

TABELA A 15. Demanda da série Linguiças após a remoção de pontos espúrios.

t	\boldsymbol{z}_t	t	\boldsymbol{z}_t	t	\boldsymbol{z}_t								
1	10684,5	19	6471,4	37	6515	55	8986,9	73	7536,8	91	9481	109	7133,7
2	10279,2	20	5586,6	38	5077,4	56	9201,3	74	7496,6	92	8813	110	6824,1
3	9322,4	21	5962,5	39	6206,8	57	8360,7	75	9849,5	93	6446,3	111	5590,9
4	7552,9	22	6775,2	40	5734,2	58	7743,4	76	9120,7	94	8499,3	112	6247,1
5	7997,9	23	6043,1	41	5190,8	59	5516,6	77	11248	95	11225	113	6148
6	8054,1	24	6978,8	42	6128,1	60	6559,9	78	13082,6	96	10182,6	114	6412,6
7	6310,4	25	6626,4	43	6190,4	61	7016	79	10709,5	97	8618,8	115	6715,9
8	6399,2	26	5833,7	44	5963,9	62	7246	80	6950	98	5767,6	116	5235,9
9	9351,5	27	7425,5	45	7566,1	63	5424,7	81	10062,2	99	6012,5	117	6374,8
10	8973,7	28	5808,7	46	7520,7	64	5387,7	82	16470,3	100	6322,2	118	7571
11	6513,8	29	5886,6	47	6620,6	65	5618,4	83	9885,2	101	6610,9	119	8460,8
12	6548,1	30	5478,8	48	9183,3	66	7058,7	84	8495,4	102	7271,4	120	6011,7
13	7050,6	31	6352	49	6990,4	67	7803,8	85	7054,6	103	6971,8	121	10933
14	6345,3	32	6590,3	50	9949,3	68	7118,5	86	6709,3	104	4938,6	122	6010,6
15	5440,4	33	5257,3	51	6454,6	69	7614,7	87	8374,8	105	7817,1	123	8331
16	5543,3	34	6046,1	52	6747,5	70	8533,3	88	10230,4	106	7231	124	7124,3
17	6163,8	35	6619,4	53	10865,1	71	8470,2	89	12121,9	107	6024,9		
18	6605	36	6114,5	54	9099,5	72	7100,2	90	8609,2	108	6338,7		

TABELA A 16. Demanda da série Mortadela Outros após a remoção de pontos espúrios.

t	Z_t	t	\boldsymbol{z}_t	t	\boldsymbol{z}_t	t	\boldsymbol{z}_t	t	Z_t	t	Z_t	t	\boldsymbol{z}_t
1	6624	19	5436	37	6718	55	12435,3	73	7078,2	91	8844	109	7798,8
2	6420	20	5296,5	38	5558	56	10851,6	74	6480,3	92	7746,5	110	8820,8
3	5383,2	21	4373,2	39	6267,5	57	9857,8	75	6826,3	93	7051	111	7320,8
4	5984,9	22	4244,5	40	6895	58	10286,5	76	7154,8	94	6963,3	112	6989,8
5	5442	23	4747,3	41	6418	59	8367,5	77	8832,8	95	6501,3	113	7669,8
6	6504	24	3878,8	42	5600,5	60	10215,8	78	7665,5	96	5626	114	8497,5
7	5448	25	9621,3	43	6602,8	61	8529,5	79	6725,8	97	7581,5	115	8781,8
8	5222	26	10374,3	44	5923	62	9782,8	80	6568,8	98	6498	116	7178,8
9	6354	27	4527,5	45	7888,5	63	8650,8	81	6678	99	3991,3	117	7976,3
10	6666	28	5475	46	6682,5	64	6394	82	5860,5	100	5090,5	118	9008
11	5976	29	8780	47	8029,5	65	6383,3	83	7448,3	101	7448,8	119	12869,5
12	5017	30	4259	48	8482,9	66	8694,2	84	6894,5	102	8980,8	120	7971,8
13	6277,1	31	6235	49	8445,3	67	7264,7	85	5925,8	103	5703,5	121	11149,8
14	5688	32	5983	50	10417,8	68	7278,2	86	6243,8	104	4500,3	122	8929,3
15	3882	33	6568	51	6787,3	69	7342	87	7429,5	105	6745	123	11185,5
16	3660	34	8073	52	4166,3	70	7750	88	7105,8	106	6789,8	124	9811,8
17	4236	35	8064	53	10527,3	71	8036,1	89	7247,8	107	7432,8		
18	5154	36	6636	54	12782,9	72	8142,9	90	5440,8	108	7532,3		

TABELA A 17. Demanda da série Salsichas 3 kg após a remoção de pontos espúrios.

t	\boldsymbol{z}_t	t	\boldsymbol{z}_t	t	\boldsymbol{z}_{t}								
1	23693,4	19	20990,6	37	22700,8	55	29329,4	73	25156,3	91	56354,6	109	32179,4
2	21908,2	20	15839,8	38	29621,8	56	25915,8	74	30784	92	48186	110	33037,6
3	20675,4	21	15252,6	39	34638,6	57	25417,6	75	34544,2	93	33406,8	111	27823,4
4	19362	22	14370,2	40	29796,2	58	20131,8	76	37642,8	94	32943,2	112	31110,8
5	23010,4	23	15462,4	41	29397,8	59	16522	77	35881,2	95	29287,6	113	30052
6	32293,7	24	20764,8	42	27586,8	60	21869,2	78	38810	96	32813,4	114	33492
7	24961,6	25	25715,4	43	30409,6	61	18009,6	79	37421,8	97	46656,4	115	36504
8	22780,6	26	26285,8	44	31410,8	62	19125,2	80	33761,2	98	29358,8	116	41456
9	26982,2	27	19496,4	45	34101,8	63	14838	81	32530,2	99	24214	117	35709,2
10	24221	28	19614,4	46	28037,6	64	16523,2	82	30683,4	100	24280,6	118	28732,2
11	18598,8	29	17391,2	47	26573,4	65	17153,6	83	35917,2	101	23768	119	39852,2
12	18834	30	15611,6	48	25630	66	17147,4	84	36212,2	102	27126	120	28408,6
13	20377	31	16215	49	27999,4	67	17661	85	34328,4	103	26365,6	121	50311,4
14	17741	32	29360,8	50	29574,4	68	18663,6	86	36819,2	104	16533,4	122	36367,8
15	14935,6	33	21238,6	51	22343,3	69	19395,2	87	40930,8	105	22008,6	123	53402,4
16	15238,8	34	26671,6	52	17265	70	18130,6	88	41552,8	106	18213,2	124	49735,6
17	16269	35	29462,2	53	29787,8	71	18867,6	89	35126,4	107	26418,4		
18	16240	36	23472,4	54	29618,8	72	25934,8	90	33979,8	108	26574		

TABELA A 18. Demanda da série Salsichas Auto-Serviço após a remoção de pontos espúrios.

t	\boldsymbol{z}_t	t	\boldsymbol{z}_t	t	\boldsymbol{z}_t								
1	12592	19	13459,4	37	13162,4	55	16297,8	73	10959,3	91	13354,2	109	11152,5
2	14026,4	20	11975	38	10991,1	56	15535,7	74	12349,7	92	14178,7	110	11373,3
3	13418	21	11540,5	39	11665,5	57	15265,3	75	12862,6	93	11937,2	111	12615,4
4	15790,1	22	14077,8	40	14699,2	58	13139,1	76	12070,3	94	10626,5	112	10673,5
5	13763,2	23	12075,4	41	11756,8	59	12132,8	77	11877,6	95	12200,6	113	10498,7
6	15301,5	24	12043,1	42	11842,4	60	12640,8	78	13553,7	96	11737,2	114	11214
7	11844,7	25	11793,7	43	11726,6	61	14019,4	79	14511	97	12730,8	115	12165,4
8	10849,5	26	10648,4	44	12879	62	13259,8	80	11658,1	98	10170,5	116	11476,3
9	16680,1	27	14806,1	45	12388,3	63	13413,5	81	11173	99	12606	117	13519,9
10	13926	28	12234,3	46	12124,5	64	11681,7	82	10994,9	100	12580,3	118	12589,9
11	12312,8	29	12670,9	47	12401,7	65	10687,1	83	13165,3	101	13218,1	119	12395,4
12	11854,6	30	12293,2	48	13238,5	66	14105,6	84	13174,5	102	12755,7	120	9346,2
13	12636,2	31	13570,8	49	14265,4	67	14470,5	85	10988,1	103	11618,2	121	11972,7
14	11888,1	32	12501,3	50	16559,6	68	12634,7	86	13211,4	104	7911,9	122	9033,3
15	10356,8	33	11305,4	51	12457,4	69	12701	87	13499,6	105	14188,6	123	13250,9
16	10127,7	34	12482,6	52	9133,2	70	12937,4	88	11590,7	106	13867,9	124	9293,5
17	11918,6	35	14428	53	17262	71	12227,4	89	11434,8	107	12571,9		
18	12445,3	36	11413,3	54	16034,5	72	12237,1	90	10660,9	108	11228,8		

TABELA A 19. Demanda da série Classe C após a remoção de pontos espúrios.

t	\boldsymbol{z}_t	t	\boldsymbol{z}_t	t	\boldsymbol{z}_t								
1	50435,5	19	45482,2	37	39412,2	55	51306	73	51536,2	91	55693,4	109	48127,5
2	55802,7	20	42945,7	38	38569,3	56	52557,5	74	47490,8	92	53323,2	110	47316,4
3	53051,1	21	41702,1	39	41955,8	57	52204,5	75	51292,4	93	45767,6	111	44216,3
4	49927,9	22	44988,5	40	47780	58	48406,5	76	45906,4	94	50318	112	43502,7
5	48468,2	23	44671,2	41	40388,2	59	42214,5	77	45410,4	95	47383,5	113	44316
6	52233,9	24	43893,3	42	42099,6	60	46288	78	46477,3	96	42358,3	114	42678
7	48680,8	25	40717	43	46132,2	61	44295,1	79	53202,5	97	55311,2	115	48795,3
8	42755,4	26	40777,3	44	45507,2	62	46767,1	80	43302,2	98	49163,9	116	42087,4
9	55157,8	27	44891,2	45	47504,4	63	43192,5	81	50394,5	99	49809,8	117	45321,7
10	48802,2	28	41457,8	46	40337,9	64	43959,7	82	44752,8	100	50166,4	118	46902,1
11	45838,3	29	39379,3	47	47534,4	65	40339,6	83	50174,1	101	54535,8	119	48888,5
12	43132,67	30	39396,8	48	45708	66	56819,4	84	47301,4	102	57624,7	120	38533,6
13	50804,5	31	44831,4	49	47329,9	67	55628,2	85	44644,8	103	53459,4	121	54779,8
14	46223,1	32	43391,8	50	52629,4	68	50811,4	86	46064,7	104	36704,2	122	40311,2
15	39242,3	33	37871	51	42703,6	69	51868,8	87	50794,3	105	51455,7	123	58413,6
16	40140,1	34	43570,5	52	36309	70	47952,8	88	46116,8	106	52921	124	47925,4
17	45084,2	35	48811,1	53	59252,4	71	49575,3	89	50069,2	107	50455,9		
18	47340,4	36	39315	54	59244,1	72	50944,2	90	45537,8	108	44059,2		