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The index C�
pm used in process capability is proposed as

an optimization criterion in this article. This index can be

viewed as an extension of mean squared error (MSE). Thus,

the index C�
pm allows practitioners to find an optimal setting

with the mean responses close to their respective target

values, Ti, while the standard deviations (or variance) of the

responses are kept small. The index C�
pm as an optimization

criterion is applicable when upper specification limits, target

values, and lower specification limits of mean responses are

available. However, it also can be applied to mean responses

with only target values and lower specification limits (or

upper specification limits) in specific situations. An example

will be used to illustrate this proposal.

Keywords index C�
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gradient (GRG)

INTRODUCTION

Researchers have carried out numerous studies
since the introduction of Response Surface
Methodology (RSM). RSM typically involves experi-
mental design, regression models, and optimization.
The relationship between the independent variables
and the responses are needed in RSM. Thus, RSM

normally starts with experimental design. The central

composite design, the Box-Behnken design, and others

are among designs used in RSM. The use of experi-

mental designs allows practitioners to collect data on

the responses at a particular design point.
Furthermore, regression models are built based on

the data collected in the experimental design. Four

regression techniques available in the literature are:

ordinary least-squares regression (OLS), generalized

least squares (GLS), multivariate regression (MVR),

and seemingly unrelated equations regression (SURE).
Optimization, as the final step, will be done after

model building. Generally, there are two types of

optimization: dual response surface optimization and

multiple response optimization. Dual response surface

optimization is an approach that allows practitioners
to optimize the primary response subject to an

appropriate constraint on the value of the secondary

response. Castillo and Montgomery (1993), Copeland

and Nelson (1996), Fan (2000), Kim and Lin (1998),

Lin and Tu (1995), Vining and Bohn (1998), Vining

and Myers (1990), and others have contributed
significantly to the development of dual response

surface optimization. The mean response and the

standard deviation (or variance) response of a quality

characteristic are needed in dual response surface

optimization. Table 1 is the general form of an
experimental design for a dual response surface

approach with m design points, k coded process

settings, and n replications at each design point.

Figure 1 shows a summary of the dual response

surface approach.
In multiple response optimization, researchers

seek to optimize the mean response of p quality

characteristics simultaneously to find an optimal

setting. However, the standard deviation (or variance)
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of the responses of the p quality characteristics are not
taken into consideration during the optimization.
Castillo et al. (1996), Derringer and Suich (1980),
Leon (1997), and others contributed to this kind of
optimization. Table 2 is the general form of an
experimental design for a multiple response approach
with p quality characteristics, m design points, k coded
process settings, and single observation (nonreplica-
tion) at each design point. Figure 2 shows a summary
of the multiple response approach.

Besides these two approaches, researchers like
Ribeiro et al. (2000–2001) combined the dual response
surface approach and multiple response approach
together. Such a combination allows practitioners
to take the standard deviation (or variance) of the
responses of the p quality characteristics into con-
sideration during optimization. Table 3 is the general
form of the combination between the dual response
surface approach and the multiple response approach
with p quality characteristics, m design points, k coded
process settings, and n replications at each design point
of every quality characteristic. Figure 3 shows the
combination between the two approaches and it is our
focus in this article.

In the next section, we introduce the index C�
pm,

which can be used when the upper specification
limit (USL), the target value, and the lower specifica-
tion limit (LSL), of the mean response are avail-
able. In addition, the use of the index C�

pm in mean
responses with only target value and LSL (or USL)
will be discussed. An example will be used to illustrate
the proposed optimization index.

THE INDEX C�
pm

Lin and Tu (1995) proposed to minimize the mean
squared error (MSE) as an optimization criterion in
dual response surface and defined MSE as:

MSE ¼ ð!̂!� � TÞ
2
þ !̂!2

� ½1�

where !̂!� is the fitted response surface for the mean; !̂!�

is the fitted response surface for the standard devia-
tion, and T is the target value for the mean.

In this article, the index C�
pm, which was originally

proposed by Chan et al. (1988) is used as an
optimization criterion. Chan et al. (1988) defined the
index C�

pm as:

C�
pm ¼

minðUSL� TT � LSLÞ

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�� TÞ

2
þ �2

q ½2�

¼
d � jm� T j

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�� TÞ

2
þ �2

q ½3�

where USL is the upper specification limit,
LSL is the lower specification limit,
T is the target value for the mean,
� is the mean, � is the standard deviation,
d ¼ ðUSL� LSLÞ=2, and
m¼ (USLþLSL)/2.

The idea of introducing the index C�
pm by

Chan et al. (1988) is to assess the probability of falling
outside the specification limits when a process with
target value T is normally distributed. The original

Table 1

General form of an experimental design for a dual response surface approach

Design point

Coded process

settings Replication

x1 x2 � � � xk 1 2 � � � n

1 �1 �1 � � � �1 Y11 Y12 � � � Y1n

2 0 �1 � � � �1 Y21 Y22 � � � Y2n
..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

m 1 1 � � � 0 Ym1 Ym1 � � � Ymn

Figure 1. Summary of dual response surface approach.
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Table 2

General form of an experimental design for a multiple response approach

Design

point

Coded process

settings

Quality

characteristics

x1 x2 � � � xk 1 2 � � � p

1 � 1 � 1 � � � � 1 Y11 Y12 � � � Yp1

2 0 � 1 � � � � 1 Y21 Y22 � � � Yp2

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

.

m 1 1 � � � 0 Y1m Y2m � � � Ypm

Figure 2. Summary of multiple response approach.

Table 3

General form of an experimental design for the combination between dual response surface approach and

multiple response approach

Design point

Coded process

settings

Quality characteristic 1

replication

Quality characteristic 2

replication

Quality characteristic 3

replication

x1 x2 � � � xk 1 2 � � � n 1 2 � � � n 1 2 � � � n

1 � 1 � 1 � � � � 1 Y111 Y112 � � � Y11n Y211 Y212 � � � Y21n Yp11 Yp12 � � � Yp1n

2 0 � 1 � � � � 1 Y121 Y122 � � � Y12n Y221 Y222 � � � Y22n Yp21 Yp22 � � � Yp2n

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

m 1 1 � � � 0 Y1m1 Y1m2 � � � Y1mn Y2m1 Y2m2 � � � Y2mn Ypm1 Ypm2 � � � Ypmn

Figure 3. Summary of combination between dual response surface approach and multiple response approach.
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idea of using the index C�
pm (that is, the probability of

falling outside the specification limits) will not be

applied here. The index C�
pm is simply used as an

optimization metric in this article, and [2] and [3] are

modified so that the index C�
pm becomes:

C�
pm ¼

minðUSL� TT � LSLÞ

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð!̂!� � TÞ

2
þ !̂!2

�

q ½4�

¼
d � jm� Tg

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð!̂!� � TÞ

2
þ !̂!2

�

q ½5�

Equations [4] and [5] can be viewed as an extension

of [1]. The greater the value of the index C�
pm, the better

the optimal settings. In order to handle a process or

product with p quality characteristics, we further

modify Eqs. [4] and [5] and define Total C�
pm as:

TotalC�
pm ¼

Xp

i¼1

ei
minðUSLi � TiTi � LSLiÞ

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!̂!i� � TiÞ

2
þ !̂!2

i�

q ½6�

¼
Xp

i¼1

ei
di � jmi � Tij

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð!̂!i� � TiÞ

2
þ !̂!2

i�

q ½7�

where USLi is the USL quality characteristic i,
LSLi is the LSL quality characteristic i,
Ti is the target value for the mean of quality

characteristic i,
!̂!i� is the fitted response surface for the mean of

quality characteristic i,
!̂!i� is the fitted response surface for the

standard deviation of quality characteristic i,
di¼ (USLi�LSLi)/2,
mi¼ (USLiþLSLi)/2,
ei is the degree of importance or priority of

quality characteristic i, andPp
i¼1 ei ¼ 1.

When USL, target value and LSL are available,

both Eqs. [6] and [7] can be used to handle ‘‘target

value is best’’. In addition, Eq. [6] also permits the

optimization of one-sided specification limits, that is,

when only the target value and LSL (or USL) are

available. For a quality characteristic with only the

target value and LSL, following Chan et al. (1988), we

let USL ¼ 1. Thus, Eqs. [4] and [6] have the following

form:

C�
pm ¼

T � LSL

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð!̂!� � TÞ

2
þ !̂!2

�

q ½8�

TotalC�
pm ¼

Xp

i¼1

ei
Ti � LSLi

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð!̂!i� � TiÞ

2
þ !̂!2

i�

q ½9�

In addition, Chan et al. (1988) also set LSL ¼ �1

when only the target value and USL are available.
Thus, [4] and [6] become:

C�
pm ¼

USL� T

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð!̂!� � TÞ

2
þ !̂!2

�

q ½10�

TotalC�
pm ¼

Xp

i¼1

ei
USLi � Ti

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð!̂!i� � TiÞ

2
þ !̂!2

i�

q ½11�

In this article, the Generalized Reduced Gradient
(GRG) algorithm is used to find the optimal setting
that maximizes Eqs. [6], [7], [9], or [11]. As an
alternative, optimization can also be done without
the constant ‘‘3’’ in the denominators of Eqs. [6], [7],
[9], and [11]. We cannot get an optimal setting without
the numerators of Eqs. [6], [7], [9] and [11] if the p
quality characteristics have different units (such as
temperature, pressure and time). Thus, the main
function of the numerators of Eqs. [6], [7], [9], and
[11] is to standardize the p quality characteristics. After
standardization, the p quality characteristics become
dimensionless and they can be added to form the
optimization criterion. However, the numerators of
Eqs. [6], [7], [9], and [11] can be ignored when the p
quality characteristics have the same unit of measure.
The proposed optimization index has the following
advantages: (i) degrees of importance or priority can
be given to the p quality characteristics, (ii) it is
dimensionless, (iii) it involves the standard deviation of
the responses of p quality characteristics in the overall
optimization, and (iv) Equations [6] can be used to
optimize mean responses with two-sided specification
limits and one-sided specification limits at the same
time.

The use of index C�
pm generally works well when

the target value and LSL (or USL or both specification
limits) are available. However, there is a disadvantage
with our proposed optimization index, that is, the
index C�

pm is intended for quality characteristics that
have a specific target value. If the target value is not
available, index C�

pm cannot be applied even though the
LSL or USL or both specification limits are available.
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This is a limitation of our proposal. Also, using C�
pm

for optimization may have negative consequences
for other capability metrics such as NC (fraction
nonconforming), NS (net sensitivity), and Cpk (see
Flaig (2002)).

A review of the literature finds that Pignatiello
(1993) proposed a discrete metric that is nearly a
reciprocal of ours. However, there is a major difference
between them in that ours is a continuous metric. That
is, regression models for the mean and standard
deviation (or variance) of p quality characteristics
are built. These regression models are used to then
find the optimum settings. Model building [e.g.,
mean responses or standard deviation (or variance)
responses] is a common practice in RSM. Myers and
Montgomery (2002) state that in the practical applica-
tion of response surface methodology (RSM) it is
necessary to develop an approximating model for the
true response surface. Since the proposed optimization
index is used to solve the multiple responses situation
in RSM, it has followed the above statement given by
Myers and Montgomery (2002). The Pignatiello metric
(1993) does not build regression models for the mean
or standard deviation of the p quality characteristics.
Thus, our optimization metric is different from the
Pignatiello metric, and we feel that our approach offers
several potential advantages. For example, many
practitioners (e.g., Quality Engineers and Process
Engineers) have used process capability indices in
their daily tasks for evaluating the performance of
a process or product. Thus, practitioners are very
familiar with the formulae, ideas, and concepts of
process capability indices. Therefore, the formula for
index C�

pm may be readily understood and accepted by
them in their effort to find optimum process settings.

EXAMPLE

Initially, we planned to use the experimental data
from Fogliatto and Albin (2000) for illustrative
purposes. This is because the experimental design in
Fogliatto and Albin have a similar form to that of
Table 3 of this article. Unfortunately, the experimental
design does not allow for the building of regression
models for the standard deviation of the three quality
characteristics. Thus, we have used the regression
models from Ribeiro et al. (2000–2001) to illustrate our
proposal. In Ribeiro et al. (2000–2001) there are
twenty regression models (five mean responses with
USL and LSL, two mean responses with only USL,
three mean responses with only LSL, and their
corresponding variance models). We only use six out

of the twenty regression models available, that is,
ŶY4ŶY7ŶY10 and the corresponding variance models.
ŶY4ŶY7, and ŶY10 are selected based on their having the
highest R-squared values from their respective group
(that is, mean responses with USL and LSL, mean
responses with only USL, and mean responses with
only LSL). The purpose of choosing ŶY4ŶY7, and ŶY10

from each group is to illustrate that our proposal can
simultaneously optimize two-sided specification limits
and one-sided specification limits. Table 4 gives the
related information on ŶY4ŶY7, and ŶY10 from Ribeiro
et al. (2000–2001).

Models ŶY4ŶY7ŶY10, and the corresponding variance
models involve five coded control factors, that is,
Xk � 1 � Xk � 1 k¼ 1, 2, 3, 4, and 5. Let !̂!1� denote
the mean response of ŶY4!̂!2� denote the mean response
of ŶY7!̂!3� denote the mean response of ŶY10 !̂!

2
1� denote

the variance of ŶY4 !̂!
2
2� denote the variance response of

ŶY7, and !̂!2
3� denote the variance response of ŶY10. Thus,

the fitted regression models for !̂!1� !̂!
2
1� !̂!2� !̂!

2
2� !̂!3�,

and !̂!2
3� are respectively:

!̂!1� ¼ 31:57þ 3:60X1þ 1:43X2
1 þ 1:98X2þ 1:58X2

2

þ 1:69X3þ 1:10X4þ 2:36X5 ½12�

!̂!2
1� ¼ 0:623þ 0:253X2 ½13�

!̂!2� ¼ 74:11� 1:17X1 � 4:88X4 þ 1:47X5

þ 0:92X1X2 � 0:689X3X4 ½14�

!̂!2
2� ¼ 0:5 ½15�

!̂!3� ¼ 520:7� 58:1X1 � 32X2
1 � 34:2X2 � 22:6X2

2

� 32:7X3 � 12:1X4 � 21:6X5 ½16�

!̂!2
3� ¼ 13:329� 6:566X2 � 6:673X3 ½17�

The GRG algorithm in the ‘‘Solver’’ option
in Microsoft� Excel� is used to maximize Eq. [6]

Table 4

Responses and related information

Response

variable LSL

Target

value, T USL

ŶY4 21.02 30 32.98

ŶY7 — 65 78

ŶY10 496.42 530 —

Index C�
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to find the optimal setting. We assume that the

three quality characteristics are equally important

in this article, that is, e1¼ e2¼ e3¼ 1/3. In addition,

we also assume that the LSL of ŶY7 is equal to �1 and

theUSL of ŶY10 is equal to1. Furthermore, the starting

point of this example is X0 ¼ (0, 0, 0, 0, 0). Table 5

summarizes the optimal setting, expected mean,

expected variance, index C�
pm, and Total C�

pm.
The maximization of Eq. [6] leads to !̂!1� ¼

28:947 !̂!2
1� ¼ 0:715 !̂!2� ¼ 78:000 !̂!2� ¼ 0:500,

!̂!3� ¼ 529:914; and !̂!2
3� ¼ 4:262. This optimal set-

ting gives the expected means of ŶY10ð¼ 529:914Þ and
ŶY4ð¼ 28:947Þ which are very close to their respec-
tive target values and with very small expected vari-
ances. However, the expected mean of ŶY7 ¼ 78:000
is far from its target value (¼ 65) with constant
expected variance. Although the proposal of this
article may be viewed as an extension of MSE, it will
not promise that all expected means would have only
small biases from their respective target values because
the proposed optimization index involves p quality
characteristics in the optimization. Figure 4 gives the
Microsoft� Excel� after spreadsheet implementation
used for this example.

Based on the Ribeiro et al. (2000–2001) method,
the optimal setting is given as (� 0.645, 0.475, 0.955,
1.000, �1.000). This setting yields !̂!1� ¼ 31:494
!̂!2
1� ¼ 0:743 with C�

pm ¼ 0:192; !̂!2� ¼ 67:575 !̂!2
2� ¼

0:500 with C�
pm ¼ 0:541; and !̂!3� ¼ 501:539

!̂!2
3� ¼ 3:837 with C�

pm ¼ 0:131. The C�
pm of ŶY7 at this

setting obviously shows some improvement over the
proposed optimization index but we obtain less

Figure 4. Microsoft� Excel� implementation.

Table 5

Optimum results

Expected

mean

Expected

variance C�
pm

!̂!i� ¼ 28:947 !̂!2
1� ¼ 0:715 0.245 Total

C�
pm ¼ 2:162!̂!2� ¼ 78:000 !̂!2

2� ¼ 0:500 0.111

!̂!3� ¼ 529:914 !̂!2
3� ¼ 4:262 1.806

Optimal setting (�0.794, 0.365, 1.000,�0.843,� 1.000).
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favorable C�
pm’s for the other two responses, especially

ŶY10. The Total C
�
pm for this setting equals 0.864, which

is smaller than that in Table 5. Thus, the proposed
optimization index gives a better optimal setting for
Total C�

pm than the Ribeiro et al. (2000–2001) method.

CONCLUSION

The use of Total C�
pm as an optimization criterion,

as illustrated in this article, allows practitioners to
consider both means and standard deviations (or
variance) responses in the optimization. Assuming a
process target value, this proposal can not only be used
to handle two-sided specification limits (USL and
LSL) but it can also be applied to mean response with
only a LSL or USL. We believe that the use of
response surface methods applied to the mean and
standard deviations responses offers significant advan-
tages in optimization. We hope that, in the future,
more multiresponse experiments will be conducted
along the line suggested in this article.
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