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Abstract Problems in engineering design often involve
determining design variable settings to optimize indi-
vidual product performance for multiple criteria, which
are often in conflict. We review mathematically rigorous
techniques from the statistical literature for finding a
vector x of design variable settings, which produces an
optimal compromise solution among a group of priori-
tized response variables. The best compromise solution
is typically gained by optimizing an objective function,
which incorporates the prioritized demands of multiple
responses. Since most multi-response objective functions
are constructed by combining the functions used to
optimize univariate responses, a review of the prominent
univariate approaches is presented first. A multivariate
approach from the engineering literature called the
compromise decision support problem (cDSP) is also
reviewed. Finally, a table comparing the relative merits
of the different multivariate approaches summarizes the
article in a concise and user-friendly fashion.

Keywords Optimal design Æ Robust engineering
design Æ Multiple response Æ Loss function

1 Frame of reference

One of the most important roles for an engineering
designer is to make decisions about products that are
being designed. The value of most products hinges upon

their ability to satisfy multiple functional criteria. Typ-
ically, a designer is asked to determine design variable
settings to optimize product performance on these
multiple criteria, which are often in conflict. In this
article, we call these criteria quality characteristics or
responses, and note that these are often of varying pri-
ority to the end user. This requires a design decision
maker (DDM) to prioritize and/or assign quantitative
importance measures to responses in order to make the
best compromise choices.

Our approach is founded on the idea of bounded
rationality, as proposed by Simon (1976). Unlike the
ideal state commonly assumed for economic analyses,
which assumes that a designer has perfect and complete
information, bounded rationality more closely reflects
the actual state of the world in which information is
uncertain, incomplete, and complex, and where the
number of potential courses of action is nearly infinite. If
complete information were available, it would be pos-
sible to invoke a single objective design making in all
circumstances, as recommended by Hazelrigg (1996) and
others. However, in recognition of the fact that the
world is often less than ideal, we assert that, in practice,
rigorous methods for multi-criteria design decision
making are essential.

In this paper, we explore the formulation of engi-
neering design decisions in the context of the more
general, mathematically rigorous techniques docu-
mented in the statistical literature for finding a vector x
of variable settings to yield an optimal compromise
solution among a group of prioritized response vari-
ables. We will examine several attributes of each
approach, including how the correlation structure of the
multiple responses is utilized in the optimization process.

Some techniques assume that the multiple responses
are independent of each other. This implies that varia-
tion in one response is not related to variation in any
other response. While this assumption brings mathe-
matical simplification to statistical analysis, it is not the
reality of most design situations. For example, customer
criteria for a car include fuel efficiency, cost, reliability,
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maneuverability, capacity, vehicle weight, and driving
comfort. These are clearly correlated since higher vehicle
weight typically implies both higher capacity and lower
fuel efficiency. Hence, the assumption of response inde-
pendence is an impracticality in many design problems.

Other techniques actively exploit the correlations of
the responses as a source of information while searching
for optimal design parameters. This is a statistical
advantage since an additional source of response infor-
mation, i.e., correlation structure, is being put to use.
Lastly, there are techniques which, while not actively
harnessing the correlation information, are not ham-
pered by an assumed independence of the responses.
Regardless of how the response correlation structure is
employed, all techniques examined assume that ordering
and weighting of responses are carried out by a single
DDM and are transitive.

One of the commonly cited examples in the statistical
literature is that of manufacturing a beef stew military
field ration, as detailed in Contreras et al. (1995). In this
case, there are two important quality characteristics (i.e.,
responses); namely, heating rate index and the lethality
index. The heating rate index is the rate at which the
product may be brought to sterilizing temperature and
the lethality index is an indicator of microbiological
safety. The five design variables include sauce viscosity,
residual gas, solid-to-liquid ratio, net weight, and speed
of rotation of the food pouch during the heating process.

A DDM wants to choose the settings of these five
variables so that the heating rate is as fast as possible,
since this expedites manufacturing, and so that the
lethality index stays above a certain minimum to guar-
antee consumer safety. Furthermore, the DDM wants to
minimize how far the lethality index rises above the re-
quired safety level since flavor deteriorates as this index
rises. This last requirement is an example of a constraint
within the multi-response optimization.

Even for the simple case of only two responses, the
statistically based methods typically employ an objective
function incorporating the relative importance of the
two responses. The design goal is to identify the specific
design variable settings that optimize the objective
function. In most statistically based methods, the key to
finding these optimal design parameters is choosing the
appropriate objective function for the design situation at
hand.

Important considerations when choosing the multi-
response optimization approach include how many and
which type of individual responses are handled, how
they are weighted, the type of modeling used to represent
individual responses or the objective function, the
number of responses reasonably managed by the
objective function, and the specific optimization tech-
niques which complement that function.

Since most statistically based multi-response objec-
tive functions are formed by combining objective func-
tions used to optimize single responses, in Sect. 2, we
review the common statistical techniques for optimizing
a single response. In Sect. 3, we compare the different

multi-response objective functions formed by additive
and multiplicative combination of the univariate objec-
tive functions. In Sect. 4, we review the compromise
decision support problem (cDSP), a hybrid formulation
incorporating concepts from both traditional mathe-
matical programming and goal programming, which is
used in engineering sectors for solving the multi-
response optimization problem. In Sect. 5, we compare
the different multi-response techniques with respect to a
number of important metrics, including their ability to
manage constraints and how the optimal solutions are
affected by shifts in target or specification.

2 Single response optimization from the statistics
literature

A common criterion for univariate response optimiza-
tion is to find the design variable settings which produce
a response that is both on-target and of sufficiently low
variability. While the ideal univariate response is
simultaneously on-target and of minimal variance,
reality usually forces the DDM to make trade-offs
between on-target performance and low variance. In the
first subsection, we examine two methods for focusing
on the interplay between the location and variation of
the system response:

1. Loss functions, especially the two-step strategies
(Taguchi 1986)

2. The dual response method

In the second subsection, we define utility functions,
i.e., objective functions measuring the positive value, or
worth, of a set of design variable settings, and their use
in univariate optimization. The majority of the statistical
literature dealing with univariate response optimization
consists of techniques built around loss or utility func-
tions.

2.1 The loss function approach

In this subsection, we examine two different ways of
focusing on the interplay between the location and
variation of the system performance. The first of these is
the use of loss functions with emphasis on the two-step
strategies (Taguchi 1986), which exploit the decompo-
sition of the expected value of the squared-error loss
function. The second method is a strategy called the dual
response method (Vining and Myers 1990), which opti-
mizes either location or variance while constraining the
other.

2.1.1 Commonly used loss functions

There are a few standard loss functions which are
commonly used to evaluate process function. Among
these standard losses, the squared-error loss function is
the most important and is defined as follows:
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L Y ; tð Þ ¼ Y � tð Þ2 ð1Þ

whereY represents the actual process response and t is the
targeted value. A loss occurs if the response Y deviates
from its target t. This loss function originally became
popular in estimation problems considering unbiased
estimators of unknown parameters (Berger 1995). The
expected value of (Y�t)2 can be easily expressed as:

E Lð Þ¼ A0E Y � tð Þ2

¼ A0 VAR Yð Þ þ E Yð Þ � tð Þ2
h i

ð2Þ

where VAR(Y) and E(Y) are themean and variance of the
process response, respectively, and A0 is a proportional
constant representing the economic costs of the squared
error loss. If E(Y) is on target, then the squared-error loss
function reduces to the process variance. Its similarity to
the criterion of least squares in estimation problems
makes the squared-error loss function easy for statisti-
cians and engineers to grasp. Furthermore, the calcula-
tions for most decision analyses based on squared-error
loss are straightforward and easily seen as a trade-off
between variance and the square of the off-target factor.

To provide decision makers with flexible weighting of
the off-target squared and variance components, Box
and Jones (1990) introduced the following general class
of squared-error loss functions:

E Lð Þ ¼ A0 p E Yð Þ � tð Þ2 þ 1� pð ÞVAR Yð Þ
h i

ð3Þ

where 0 £ p £ 1.
Note that the loss function shown in Eq. 1 is a special

case of this loss function where:

p ¼ 1� pð Þ ¼ 0:5

which places equal weight on the squared off-target and
variance components. The DDM wishes to identify the
vector of design variable settings that minimizes the
expected value of the loss function.

2.1.2 Optimization with two-step procedures

Taguchi (1986) introduced robust parameter design, a
method for designing processes that are robust (i.e.,
insensitive) to uncontrollable variation, to major
American corporations. The objective of this method-
ology is to find the settings of design variables that
minimize the expected value of squared-error loss, as
defined in Eq. 2.

Robust design (RD) assumes that the appropriate
performance measure i.e., Y can be modeled as a
transfer function of the fixed control variables and the
random noise variables of the process as follows:

Y ¼ f x; N; hð Þ þ e ð4Þ

where x=(x1,..., xp)
T is the vector of control factors,

N=(N1,..., Nq)
T is the vector of noise factors, h is the

vector of unknown response model parameters, and f is
the transfer function for Y. The control factors are as-
sumed to be fixed and represent the fixed design vari-
ables. The noise factors N are assumed to be random
and represent the uncontrolled sources of variability in
production. The pure error � represents the remaining
variability that is not captured by the noise factors, and
is assumed to be normally distributed with zero mean
and finite variance.

Taguchi (1986) divides the design variables, i.e.,
control variables, into two subsets, x=(xa, xd), where xa
and xd are called, respectively, the adjustment and the
non-adjustment design factors. An adjustment factor
influences process location while remaining effectively
independent of process variation. A non-adjustment
factor influences process variation.

Taguchi (1986) also introduced a family of perfor-
mance measures called signal-to-noise ratios (SNR),
whose specific form depends on the desired response
outcome. The case where the response has a fixed non-
zero target is called the nominal-the-best (NTB) case.
Likewise, the cases where the response has a smaller-the-
better target or a larger-the-better target are, respec-
tively, called the STB and LTB cases. For these three
cases, Taguchi defined the SNR as follows:

SNR ¼

10 log10
�Y 2

s2Y

h i
for the NTB case

�10 log10 1
n

Pn
j¼1

Y 2
j

" #
for the STB case

�10 log10 1
n

Pn
j¼1

1
Yj

� �2" #
for the LTB case

8>>>>>>><
>>>>>>>:

ð5Þ

where �Y and s2Y are, respectively, the sample mean and
variance of the response estimated at each test combi-
nation of design variables selected for experimentation.
The Yj are the individual response observations out of a
total of n.

The concept of the SNR originated in electrical
engineering to quantify a circuit’s ability to discern a
meaningful signal from the noise invariably transmitted
with it. The SNR is best demonstrated by the NTB case
of Eq. 5, which is the logarithm of the ratio of the
sample response mean (i.e., signal) squared to the sam-
ple response variance (i.e., noise). The SNR is the most
controversial part of Taguchi’s (1986) methods because
it combines location and dispersion in a single perfor-
mance measure. Other methods examine mean and
variance as separate performance measures.

To accomplish the objective of minimal expected
squared-error loss for the NTB case, Taguchi (1986)
proposes the following two-step optimization procedure:

1. Calculate and model the SNRs and find the non-
adjustment factor settings, i.e., xd which maximize
the SNR
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2. Shift mean response to the target by changing the
adjustment factor(s) xa

For the STB and LTB cases, Taguchi (1986) recom-
mends directly searching for the values of the design
vector x which maximize the respective SNRs. An
alternative to Taguchi’s optimization approaches for
these cases is proposed by Tsui and Li (1994).

In general, Taguchi (1986) gave no justification for
how this use of the SNR would achieve the stated goal of
minimal average squared-error loss. Leon et al. (1987)
defined a function called the performance measure
independent of adjustment (PerMIA), which justified the
use of a two-step optimization procedure. They also
showed that Taguchi’s (1986) SNR for the NTB case is a
PerMIA when an adjustment factor exists, and when the
process response transfer function is of a specific mul-
tiplicative form. When Taguchi’s (1986) SNR complies
with the properties of a PerMIA, his two-step procedure
minimizes the squared-error loss.

Leon et al. (1987) also emphasized two major
advantages of the two-step procedure:

– It reduces the dimension of the original optimization
problem

– It does not require re-optimization for future changes
of the target value

There is an extensive body of statistics literature
which examines the methods of Taguchi (1987). The
most often cited include Kackar (1985), Nair (1986),
Box (1988), Box et al. (1988), Nair (1992), and Tsui
(1996a).

2.1.3 Optimization with the dual response approach

The dual response approach individually models mean
and variance, optimizing one while constraining the
other. Vining and Myers (1990) applied the dual
response approach to Taguchi’s three static situations
(as listed immediately below) with the added constraint
x¢x=.2, which restricts the search area to a spherical
region of radius ..

For the STB characteristic:

minimize l̂

subject to r̂2
6t ð6Þ

For the LTB characteristic:

maximize l̂

subject to r̂2
6t ð7Þ

For the NTB characteristic:

minimize r̂2

subject to l̂ ¼ t ð8Þ

del Castillo andMontgomery (1993) attacked the same
problem by searching for the optimal values of x using the

generalized reduced gradient (GRG), a commonly used
non-linear programming primal algorithm. They cite the
GRG’s ability to consider more general forms of response
surfaces and its ability to directly specify the radius of the
spherical search region as advantages over the approach
of Vining and Myers (1990).

Lin and Tu (1995) propose directly minimizing the
weighted combination of the squared off-target factor
and variance:

minimize p1 l̂� tð Þ2 þ p2r̂
2 ð9Þ

This approach allows the user to incorporate his/her
preferences regarding the trade-off between the off-tar-
get and variance terms. This optimization criterion is
easily applied to the NTB case, but finding an appro-
priate value for t is difficult in the STB and LTB cases.
Tsui (1996b) pointed out that the minimization of this
criterion is invariant to p1 and p2 if l̂ ¼ t is satisfied.

2.2 The utility function approach

A direct conceptual opposite of the loss function, a
utility function maps a specific action (i.e., specific de-
sign variable settings) to an expected utility value (value
or worth of a process response). Utility theory deals with
the development of such functions based on a number of
assumptions, such as the possibility of stating ordered
preferences for the potential outcomes of a process.
Berger (1995) details the four axioms which a utility
function must satisfy. He requires that the utility func-
tion is bounded. However it is possible to develop a
weaker set of axioms for unbounded utility functions.
Once the utility function has been formulated, the DDM
can employ non-linear direct search methods to find the
vector of design variable settings that maximizes the
desirability function.

Harrington (1965) introduced a univariate utility
function called the desirability function, which gives a
quality value between 0 (i.e., unacceptable quality) and 1
(i.e., further improvement would be of no value) of a
quality characteristic of a product or process. He defined
the two-sided desirability function as follows:

di ¼ e� Y 0ij jc ð10Þ

where e is the natural logarithm constant, c is a positive
number subjectively chosen for scaling of the curve, and
Y 0i is a linear transformation of the univariate response
Yi such that:

Y 0i ¼
2Yi � YUSL þ YLSLð Þ

YUSL � YLSLð Þ for LSL6Yi6USL ð11Þ

where Yi, YUSL, and YISL are the current value of Y and
the upper and lower specification limits of Y, respec-
tively. Yi is a linear mapping of the within-specification
Yi values to values between �1 and +1. These proper-
ties of Yi ensure that the desirability function has the
following properties:
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– Converges to di=0 as |Yi| exceeds 1.0
– Passes through di=e�1=0.37 when |Yi|=1.0
– Passes through di=e0=1.0 at the mid-specification

pointIt is of special interest to note that, for c=2, a
mid-specification target, and response values within
the specification limits, this desirability function can
be expressed as the natural logarithm constant raised
to the squared-error loss function with a specific
proportional constant:

di ¼ e� Y 0ij j2

¼ e
� 2Yi� YUSLþYLSLð Þ

YUSL�YLSLð Þ

���
���
2

¼ e
�4

Yi�
YUSLþYLSL

2

� �
YUSL�YLSLð Þ

����
����
2

which, for the definition of ti ¼ YUSLþYLSL

2 ; leads to the
following expression:

di ¼ e
� 4

YUSL�YLSLð Þ2
Yi�tij j2

ð12Þ

3 Multi-response optimization

In Sect. 2, we introduced loss and utility functions and
showed how the relations between off-target and vari-
ance components underlie the loss function optimization
strategies for single responses. Multi-response optimi-
zation typically combines the loss or utility functions of
individual responses into a multivariate function to
evaluate the sets of responses created by a particular set
of design variable settings. The two subsections deal
with the additive and multiplicative combination of loss
and utility functions, respectively.

3.1 Additive combination of univariate loss functions

For univariate responses, the expected squared-error
loss is a convenient way to evaluate the loss caused by
deviation from target because of its decomposition into
squared off-target and variance terms. A natural exten-
sion of this loss function to multiply correlated re-
sponses is the multivariate quadratic loss (MQL)
function of the deviation vector (Y�s), where Y=(Y1,...,
Yr)

T and s=(t1,...,tr)
T, i.e.:

MQL Y; sð Þ ¼ Y� sð ÞTA Y� sð Þ ð13Þ

where A is a positive definite constant matrix. The values
of the constants in A are related to the costs of non-
optimal design, such as the costs related to repairing
and/or scrapping a non-compliant product. In general,
the diagonal elements of A represent the weights of the r
characteristics and the off-diagonal elements represent
the costs related to pairs of responses being simulta-
neously off-target.

It can be shown that, if Y follows a multivariate
normal distribution with mean vector E(Y) and covari-

ance matrix RY, the average (expected) loss can be
written as:

E MQLð Þ ¼ E Y� sð ÞTA Y� sð Þ
h i

¼ trace ARY½ � þ E Yð Þ � s½ �TA E Yð Þ � s½ �
ð14Þ

where the off-target vector product [E(Y)�s]T

A[E(Y)�s] and trace[ASY] are multivariate analogs to
the squared off-target component and variance of the
univariate squared-error loss function. Moving all
response means to target simplifies the expected multi-
variate loss to the trace[ASY] term. The trace-covariance
term shows how the values of A and the covariance
matrix

P
Y weight the individual responses within

expected multivariate loss.
The simplest approach to solve the robust design

problem is to apply algorithms to directly minimize the
average loss function in Eq. 14. Since the mean vector
and covariance matrix are usually unknown, Pignatiello
(1993) suggests their estimation by the sample mean
vector and sample covariance matrix, or a fitted model
based on a sample of observations of the multivariate
responses. This strategy of optimizing the MQL function
directly employs the correlation structure of the re-
sponses in the trace component.

To demonstrate how this MQL function additively
combines the individual loss functions, we look at the
simplest multivariate case; that of two properly ordered
responses.

Let Y ¼ Y1; Y2½ �; s ¼ t1; t2½ �; and A ¼ a1 0
0 a2

� �
:

Then:

Y1 � t1
Y2 � t2

� �T

A
Y1 � t1
Y2 � t2

� �
¼ a1 Y1 � t1ð Þ2 þ a2 Y2 � t2ð Þ2

For this simplest of cases, the MQL function is
equivalent to adding the individual squared-error loss
functions of each response. This MQL function becomes
increasingly complex with larger numbers of responses
and interactions, indicated by non-zero terms in the off-
diagonal elements of A. We repeat the same example
with a non-zero off-diagonal element.

Let Y ¼ Y1; Y2½ �; s ¼ t1; t2½ �; and A ¼ a11 a12
a12 a22

� �
:

Then:

Y1 � t1
Y2 � t2

� �T

A
Y1 � t1
Y2 � t2

� �
¼ a11 Y1 � t1ð Þ2

þ 2a12 Y1 � t1ð Þ Y2 � t2ð Þ
þ a22 Y2 � t2ð Þ2

3.1.1 The Mahalanobis distance

Khuri and Conlon (1981) propose an algorithm for the
optimization of a multi-response system which seeks the
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group of design settings that minimizes the Euclidean
distance from a vector of idealized responses, i.e., the
Mahalanobis distance (MD). The MD is a function of
the estimated responses and their covariance structure.

Their procedure assumes that all response functions
depend on the same set of design variables and can be
represented by polynomial regression models of the
same degree within the region of interest. They reduce
the multiple responses to a linearly independent subset
and calculate least squares estimates for these responses
from the multi-response data set.

They express the r linearly independent response
functions in the following multivariate form:

N ¼ XHþ e ð15Þ

where X=[Y1,..., Yr] is the n·r matrix consisting of the r
column vectors corresponding to the n observations of
each of the responses. For each of the n input vectors,
there are r different response values which make up this
n·r multi-response data matrix.

X is the n·p full column rank matrix consisting of n
rows (i.e., x1,..., xn)

T. Each row contains the p model
terms consisting of the union of all polynomial model
terms from the r different response models. These same p
model terms, however, take on different values depend-
ing on the design vector corresponding to each row.

Q=[h1, h2,..., hr] is the p·r matrix consisting of r
column vectors, each having p model parameters, and
�=[�1,..., �r] is the n·r matrix consisting of the r column
vectors corresponding to the error terms of the response
models. The usual assumptions are that the rows of � are
statistically mutually independent, each having a zero
mean vector and a common covariance matrix R. An
unbiased estimate of the covariance matrix (i.e., R̂ ) is
typically used.

Each individual response value, i.e.,Yi(xj), where Yi

indicates a specific response variable and xj is a specific
design vector, can be modeled by the following poly-
nomial equation of degree g:

Ŷi xj
� �
¼ zTj xj

� �
ĥi ð16Þ

where zTj xj
� �

is the single row vector of dimension p
from the X matrix of Eq. 15 corresponding to xj.

Khuri and Conlon (1981) recommend the following
distance measure, i.e., the MD:

MD Ŷ xj
� �

; s
h i

¼
Ŷ xj
� �
� s

� �T
R�1 Ŷ xj

� �
� s

� �

zTj xj
� �

XTX
� ��1

zjxj

2
64

3
75
1=2

ð17Þ

where Ŷ xj
� �
¼ Ŷ1 xj

� �
; . . . ; Ŷr xj

� �� 	
is the vector of esti-

mated responses from a particular design vector xj,
sT=[s1, s2,..., sr] is the vector of individual optimal re-
sponses and (XTX)-1 is the inverse of the squared design
matrix.

Khuri and Conlon’s (1981) optimal solution is the
vector of design variables xj which minimizes the dis-

tance measure MD Ŷ xj
� �

; s
h i

: For the case of potential

fluctuation around the idealized response values, they
propose a procedure for finding control variable settings
which produce a min–max solution for the distance
metric involving a modified version of the same distance
measure. Since this procedure only models the subset of
linearly independent responses, it does not extract all the
statistical information available.

3.1.2 Additive formation of multivariate loss functions

In this section, we briefly review the literature for
examples of multivariate functions formed by the addi-
tive combination of univariate loss and utility functions.
We list the cases in order of increasing complexity.

Kumar et al. (2000) suggest creating a multi-response
utility function as the additive combination of utility
functions from the individual responses. If Yi is the value
of response i, each response has utility function Pi(Yi)
and the overall utility function is defined as:

P Y1; . . . ; Yrð Þ ¼
Xr

i¼1
xiPi Yið Þ ð18Þ

where xi is the weight of each response and
Pr

i¼1 xi ¼ 1:
Here, the goal is to find the set of design variable settings
that maximizes the overall utility function.

For cases where the target is the mid-specification
point, Artiles-Leon (1996) proposes standardizing the
squared-error loss function with the following propor-
tionality constant:

A0 ¼
2

USLi � LSLi


 �2
ð19Þ

where LSLi and USLi are the upper and lower specifi-
cation limits for each Yi, respectively. With this con-
stant, the standardized squared-error loss (SLOSS)
function for a single response can be written as:

SLOSS Yið Þ ¼ 2
USLi�LSLi

h i2
Yi � tið Þ2

¼ 4 Yi�ti
USLi�LSLi

h i2 ð20Þ

This standardized loss takes the value of 0 at the target
and the value of 1 at the specification limits. A multi-
variate loss function is constructed simply as the sum of
these dimensionless standardized loss functions.

The total standard loss (TSLOSS) function corre-
sponds to the vector of responses (Y1,..., Yr) and is de-
fined as:

TSLOSS Y1; . . . ; Yrð Þ ¼ 4
Xr

i¼1

Yi � ti

USLi � LSLi


 �2
ð21Þ

where ti is the target value for each Yi. Assuming that all
responses are uncorrelated and equally weighted, the
individual standardized loss functions are simply added.
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Ames et al. (1997) proposed a multivariate loss
function, the global quality loss (GQL) function as:

GQL Y1; . . . ; Yrð Þ ¼
Xr

i¼1
xi Yi � tið Þ2 ð22Þ

where the squared-error loss function of uncorrelated
responses (Y1,..., Yr) and target values (t1,..., tr) are
weighted by the constants (x1,..., xr). The GQL is a
simple addition of the squared error losses of the indi-
vidual responses with the scaling constants representing
response priority.

For the subset of responses for which quadratic re-
sponse surface models exist (i.e., Y1,..., Ym), they define
the global quality loss function of process (GQLP) as:

GQLP Y1; . . . ; Ymð Þ ¼
Xm

i¼1
xi Yi x1; . . . ; xp

� �
� ti þ ei

� 	2

ð23Þ

where the Yi(X1,..., Xp) are the responses approximated
by quadratic response surface models and the �i are the
residuals of the models. When the �i are small compared
to the off-target factors, the GQLP can be defined as the
quality loss function of process (QLP):

QLP Y1; . . . ; Ymð Þ ¼
Xm

i¼1
xi Yi x1; . . . ; xp

� �
� ti

� 	2 ð24Þ

Minimizing the QLP also minimizes the GQLP for the
following two cases:

– �i are independent and of equal variance
– When off-target contributions to the loss function are

significantly larger than the random error contribu-
tions

The first condition is a common assumption of
response surface modeling and the second is a common
characteristic in product development. In their photo-
graphic application, weighting is assigned by subjec-
tively ranking the effect of a particular response being
off-target.

3.1.3 Optimization of multivariate loss functions

For the expected MQL of Eq. 14, Pignatiello (1993)
introduces a two-step procedure for finding the design
variable settings that minimize this composite cost of
poor quality. His procedure assumes that the responses
follow a multivariate normal distribution, are NTB, and
follow an additive model. His two-step procedure
involves minimizing trace[ASY] and potentially adjusting
the means of E(Y) to target.

Tsui (1999) extended Pignatiello’s (1993) two-step
procedure to situations where responses may be NTB,
STB, or LTB. He divides the r responses into two sub-
sets:

– Y1 ¼ Y1; . . . ; Yr1ð ÞT; i.e., those responses whose
means can be adjusted to target

– Y2 ¼ Yr1þ1; . . . ; Yrð ÞT; i.e., those responses whose
means can’t be adjusted to target

He defines a corresponding division of the mean and
target vectors as:

E Yð ÞT ¼ E Y2ð Þ; E Y2ð Þð Þ and sT ¼ sT1 ; sT2
� �

and the corresponding partitioned components of the A
matrix in Eq. 14 as:

A11; A12; A21; and A22

Under the assumption that A is symmetric, the average
loss can be written as:

E MQLð Þ ¼ trace ARY½ �þ E Y1ð Þ� s1½ �TA11 E Y1ð Þ�s1½ �
þ2 E Y1ð Þ� s1½ �TA12 E Y2ð Þ�s2½ �
þ E Y2ð Þ�s2½ �TA22 E Y2ð Þ� s2½ �

¼ trace ARY½ �þOT1þOT12þOT2

ð25Þ

where OTi refers to the respective off-target vector.
He assumes the covariance matrix of Y and the third

off-target component are functions of the non-adjust-
ment factors x2 only, and that the adjustment factors x1
can be used to shift the mean vector E(Y1) to its target
s1. It follows that SY=f(x2) and OT2=f(x2), since the
terms OT1 and OT12 drop to zero when E(Y1)=t1. For
this set of assumptions, Eq. 25 can be minimized by the
following two-step procedure:

1. Find values of x2 that minimize trace[ASY]+OT2,
say x�2

2. At the values of x�2; find values of x1 that shift the
mean vector E(Y1) to its target t1

Since the stated assumptions are those of the single
characteristic problem under an additive model, this
procedure is only appropriate when the responses follow
an additive model. Additional two-step procedures for
constrained and unconstrained minimization of the
MQL function for non-additive models are derived.

Up to this point, we have examined squared-error
loss functions whose expected value is decomposed into
off-target and variance components. Ribeiro and El-
sayed (1995) introduced a multivariate loss function
which considers, in addition to off-target and variance
components, a factor accounting for fluctuation in the
supposedly fixed design variable settings. Use of this
gradient loss function assumes models of each response
(Y1,..., Yr) as a function of the process design variables
(x1,..., xp), and estimates the variability induced on Yi

due to the variability of the process parameters using the
following terms:

r̂2
Yi
¼
Xp

k¼1
r̂2

xk

@Yi

@xk

� �2

ð26Þ
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for when the fluctuations in (x1,... xp) are independent of
each other, where r̂2

Yi
are the estimated variance of each

Yi, r̂2
xk

are the estimated fluctuations in the design
parameters, and @Yi

@xk
are the model-predicted shifts in Yi

from the random variation of xk. When the fluctuations
in (x1,..., xp) are correlated, this variance term is defined
as:

r̂2
Yi
¼
Xp

k¼1
r̂2

xk

@Yi

@xk

� �
þ
X
k 6¼l

q̂klr̂
2
xk
r̂2

xl

@Yi

@xk

� �
@Yi

@xl

� �
ð27Þ

where q̂kl is the estimated correlation between each pair
of design variables xk and xl. The authors’ multivariate
gradient loss (MGL) function is, then, the weighted sum
of the individual gradient functions, which, for the case
of independent variation in the design settings, can be
expressed as:

MGL xj
� �

¼
Xr

i¼1
xi Yi � tið Þ2 þ r̂2

Yi
þ
Xp

k¼1
r̂2

xk

@Yi

@xk

� �2
" #

ð28Þ

where MGL(xj) is the MGL function for a particular
design vector xj, and xi and ti are the weights and targets
of the individual responses, respectively. The authors
allow for a very explicit, quantitative ranking of the
responses through the xi term. They find the optimal
process parameters (i.e., design factor settings) through
standard non-linear search techniques.

Ribeiro et al. (2000) extend the gradient loss function
(Ribeiro and Elsayed 1995) by adding a term for man-
ufacturing costs. They first convert the dimensionless
loss function values (Ribeiro and Elsayed 1995) into
dollars by defining the proportionality constant K as:

j ¼ DValue
DMGL

¼ Amp � Bmp

MGLA �MGLB
ð29Þ

where Amp and Bmp are the market prices of class A
products, i.e., those with all responses close to target,
and of class B products, i.e., those with at least one
response out of specification, and where MGLA and
MGLB are the values of the loss function (Ribeiro and
Elsayed 1995) corresponding to the class A and B
products. This proportionality constant is then multi-
plied by the loss function value (Ribeiro and Elsayed
1995) to yield the equivalent lost dollar value resulting
from a particular group of design settings CQ(x):

CQ xð Þ ¼ jMGL xð Þ ð30Þ

where x is a vector of design factor settings. They
introduce manufacturing costs by starting with a multi-
response experiment with r responses (i=1,..., r). They
model manufacturing costs CM(x) as:

CM xð Þ ¼ xThþ e ð31Þ

where x is the design vector of p regressors, h is a
p-dimensional vector of regression coefficients, and � is
the residual. Finally, an extended multivariate loss

function which includes costs of poor quality and
manufacturing C(x) is defined as:

C xð Þ ¼ CQ xð Þ þ CM xð Þ ð32Þ

The weighting of responses is accomplished directly
through the weighting factor defined for the MGL
function (Ribeiro and Elsayed 1995). The authors
employ optimization techniques to find the vector x

which minimizes this overall cost function.

3.2 Multivariate utility functions from multiplicative
combination

In this section, a multivariate desirability function is
constructed from the geometric average of the individual
desirability functions of each response. The geometric
average (GA) of r components (d1,..., dr) is the rth root
of their products:

GA d1; . . . ; drð Þ ¼
Yr

i¼1
di

" #1
r

ð33Þ

The GA is then a multiplicative combination of the
individuals. When combining individual utility functions
whose values are scaled between 0 and 1, the GA yields a
value less than or equal to the lowest individual utility
value. For rating the composite quality of a product, this
prevents any single response from reaching an unac-
ceptable value, since a very low value of any crucial
characteristic (e.g., safety feature or cost) will render the
entire product worthless to the end user.

To demonstrate the simplest case of a geometric aver-
age, we show the case of combining two squared-error loss
functions. For responses (Y1, Y2) with respective loss
functions L(Y1)=a1(Y1�t1)2 and L(Y2)=a2(Y2�t2)2,
where (t1, t2) are the respective targets of the responses, the
geometric average of the two loss functions is:

GA L1ð Þ; L2ð Þ½ � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a1 Y1 � t1ð Þ2a2 Y2 � t2ð Þ2

q

¼ ffiffiffiffiffiffiffiffiffi
a1a2
p

Y1 � t1ð Þj j Y2 � t2ð Þj j
ð34Þ

which we recognize as the cross product of the roots of
the squared-error loss functions of each response. Since
the multiplicative combination of loss functions becomes
complicated very quickly, consider the geometric aver-
age of two of individual response desirability functions
(Harrington 1965). In Eq. 12, we expressed this desir-
ability function as:

di ¼ e
� 4

YUSL�YLSLð Þ2
Yi�tij j2

ð35Þ

Therefore, the GA of two such univariate desirability
functions results in the following:

GA d1ð Þ; d2ð Þ½ � ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e
� 4

YUSL 1ð Þ�YLSL 1ð Þð Þ2
Y1�t1ð Þ2

r

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e
� 4

YUSL 2ð Þ�YLSL 2ð Þð Þ2
Y2�t2ð Þ2

r
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which can be expressed as:

GA d1ð Þ; d2ð Þ½ � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e� a1 Y1�t1ð Þ2þa2 Y2�t2ð Þ2½ �

q
ð36Þ

which we recognize as the square root of the natural
logarithm constant raised to the sum of the respective
loss functions. This example demonstrates the link be-
tween the desirability function (Harrington 1965) and
the squared-error loss function.

3.2.1 Modifications of the desirability function

In order to allow the DDM to place the ideal target
value anywhere within the specifications, Derringer and
Suich (1980) introduced a modified version of the
desirability function (Harrington 1965). Their desir-
ability function for a one-sided specification is:

di ¼
0 Yi6Yi�

Yi�Yi�
Y �i �Yi�

h i/i
Yi�6Yi6Y �i

1 Yi>Yi�

8><
>:

ð37Þ

where Yi� and Y �i are the minimal and maximal accept-
able levels of Yi, respectively, Yi is the response predicted
by a certain set of design variable settings, and /i is a
positive constant whose increasing magnitude creates a
correspondingly more convex desirability curve. Values
of /i<1 create concave curves allowing higher desir-
ability values with Yi values relatively close to the min-
imal acceptable level, while values of /i>1 only allow
high desirability values when Yi is very close to the
maximal acceptable level. When /i=1, the di value is a
linear scale between the minimal and maximal accept-
able values of the response.

Their desirability function for two-sided specifica-
tions is:

di ¼

Yi�Yi�
Y �i �Yi�

h iui
Yi�6Yi6ti

Yi�Yi�
Y �i �Yi�

h iwi
ti6Yi6Y �i

0 Yi\Yi� or Yi\Y �i

8>><
>>:

ð60Þ

where ti is the target value ofYi, and/i and wi are positive
constants chosen by the DDM to indicate the importance
of an individual response being close to its target. Larger
values of /i and wi create a desirability curve with a
sharper peak at the target value, but with more rapid
drop-off as the responsemoves off-target. Lower values of
/i andwi create a flatter desirability curve that ismuch less
sensitive to a response being off-target.

The desirability function (Harrington 1965) is a spe-
cial case of the Derringer and Suich (1980) desirability
functions, which permit a target value ti anywhere within
the specification limits. Like Harrington (1965), they do
not provide for explicit weighting of the individual re-
sponses in the overall desirability function. Ranking is
implied by the relative steepness of the gradients of the
desirability curves, which are in turn the results of spe-
cific choices of /i, /i, and wi.

Derringer (1994) added explicit weighting terms to
the geometric average of the individual desirability
functions as follows:

D ¼ GA dx1

1 ; . . . ; dxr
r

� �
¼

Yr

i¼1
dxi

i

 ! 1P
xi

ð39Þ

where setting all the xi=1 yields the geometric average
of Eq. 33.

del Castillo et al. (1996) note that, since the desir-
ability functions (Harrington 1965; Derringer and Suich
1980) are non-differentiable at the target points, only
direct search optimization methods are applicable. Since
the much more efficient gradient-based methods require
first-order differentials at all points, they propose using a
piecewise continuous desirability function in which the
non-differentiable points are corrected using a local
polynomial approximation.

Kim and Lin (2000) propose finding the vector of
design variable settings x which maximizes the minimum
level that the geometric average of the individual desir-
ability functions may obtain. They state the multi-re-
sponse optimization problem as:

max
x

i ð40Þ

subject to di(x)‡i for i=1, 2,..., r and for x2W, where
di(x) are the desirability functions of the individual
estimated responses Yi(x). The goal is to identify the x

which maximizes the minimum degree of satisfaction (i)
with respect to all the responses within the experimental
region, i.e.:

max
x2X

min d1 xð Þ; . . . ; dr xð Þ½ �ð Þ ð41Þ

The advantage of this approach is that it does not
assume any form or degree of the estimated response
models, and is insensitive to the potential dependence
between responses. This is shown by contrasting with the
method of Khuri and Conlon (1981), which uses only
the subset of independent responses and requires that all
the independent responses have same order polynomial
models of the same subset of design variables. Further-
more, the i term embodies the overall degree of satis-
faction and allows for a quantitative way to compare the
results induced by different x vectors.

They suggest a desirability function of the form:

d zð Þ ¼
exp 1ð Þ�exp 1 zj jð Þ

exp 1ð Þ�1 if 1 6¼ 0

1� zj j if 1 ¼ 0

(
ð42Þ

where V is a constant (�¥ £ V £ ¥) called the exponen-
tial constant and z is a standardized parameter repre-
senting distance of the estimated response from its target
in units of maximum allowable deviation.

z is calculated differently depending on whether the
response is NTB, STB, or LTB. For the NTB case with a
symmetric desirability function, z is defined as:
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z ¼ Yi xð Þ�ti
Y max

i �ti

¼ Yi xð Þ�ti
ti�Y min

i

ð43Þ

for Y min
i 6Yi xð Þ6Y max

i and where ti is the target of re-
sponse i and Y min

i and Y max
i are the minimum and max-

imum values of the individual response, respectively.
This z function for the NTB case is readily modified for
an asymmetric desirability function.

For the STB case:

z ¼ Yi xð Þ � Y min
i

Y max
i � Y min

i
for Y min

i 6Yi xð Þ6Y max
i ð44Þ

For the LTB case:

z ¼ Y max
i � Yi xð Þ

Y max
i � Y min

i
for Y min

i 6Yi xð Þ6Y max
i ð45Þ

It is easily verified that (�1 £ z £ +1) for an NTB re-
sponse and (0 £ z £ 1) for the STB and LTB responses.
In all cases, d(z) is maximized when z=0, which happens
when Yi(x) is equal to the target value.

The choice of V determines the relative concavity of
the individual desirability curves. Increasingly negative
values of V produce decreasingly concave curves (i.e.,
more convex) and increasingly positive values of V pro-
duce desirability curves of growing concavity. They de-
fine relative concavity and convexity, respectively, as
insensitivity and sensitivity to the off-target distance.

For example, a response with V=�5 has a desirability
curve whose values drop sharply with increasing off-
target distance, while a response with V=+5 has desir-
ability values that change slowly as the response moves
further off-target. The relative values of the V variable
approximate the weighting of the individual responses
on the geometric average. Hence, weighting is accom-
plished indirectly by choosing lower V values for the
responses of higher priority.

Kim and Lin (2000), furthermore, incorporate a
technique that accounts for the predictive ability of the
individual response models. They do this by trans-
forming the original V values to V¢ indicative of the
predictive ability of the response models. For example:

10 ¼ 1þ 1� R2
� �

1max � 1ð Þ ð46Þ

will decrease each V value inversely with rising R2, where
R2 is the standard coefficient of determination in linear
regression, and Vmax is a sufficiently large value of V such
that d(z) with Vmax is extremely concave, hence, having
negligible effect on the optimization.

This makes the resulting desirability curve more
convex, i.e., of higher priority in the geometric average,
as the R2 values increase. This effectively adjusts the
relative weighting of each individual desirability func-
tion according to the predictive ability of the corre-
sponding response model so that better predictive
models get higher weighting than poorly predictive
models. They demonstrate the attainment of a design

vector yielding a higher overall desirability using the V¢
transformation than that obtained with the original V
value. Although the authors use R2 in their example, the
DDM can use any preferred metric of predictive ability.
In general, the desirability function approach neither
assumes response independence nor exploits the
response correlation information.

3.2.2 The non-domination search technique

Loy et al. (2000) extend the dual response approach
(Vining and Myers 1990) to the multi-response case by
searching for groupings of design variable vectors which
yield responses that are non-dominated with respect to
each other for each of the r separate responses. This
approach assumes a finite sample space with models for
both the mean and variance of each response so that
they can be predicted for all responses from all possible
design vectors.

This technique’s relation to the dual response ap-
proach (Vining and Myers 1990) is evident in the fol-
lowing formulations for the NTB, LTB, and STB cases:

NTB : min f1 xð Þ ¼ Y xð Þ � sj j
min f2 xð Þ ¼ r̂2

Y
ð47Þ

LTB : max f1 xð Þ ¼ Y xð Þ
min f2 xð Þ ¼ r̂2

Y
ð48Þ

STB : min f1 xð Þ ¼ Y xð Þ
min f2 xð Þ ¼ r̂2

Y
ð49Þ

wherein each response f1(x) is optimized with the con-
straint of minimizing variance, i.e., f2 xð Þ ¼ r̂2

Y :
We now demonstrate the meaning of non-domination

using the NTB case of Eq. 47 as an example. A vector of
design variable settings (i.e., x1) is said to dominate
another design vector x2 when no value of [f1(x2), f2(x2)]
is less than the corresponding element of [f1(x1), f2(x1)],
and at least one value of f1(x2) or f2(x2) is strictly greater
than the corresponding element of [f1(x1), f2(x1).

When the first grouping of non-dominated design
vectors (i.e., front) is formulated for each of the r re-
sponses, the DDM searches for the intersection of these
r first fronts. This intersection set can range from the
empty set to a large number of design vectors. For the
empty set, the DDM proceeds to examine the intersec-
tions of the successive fronts of the r responses. The
authors apply this procedure to a military field ration
study (Wurl and Albin 1999) and identify design vectors
yielding comparable results to those identified using the
expected loss approach (Pignatiello 1993) and the
desirability approach (Derringer and Suich 1980).

This technique differs from the expected loss and
desirability approaches in that it allows the DDM to
proceed without subjectively prioritizing or combining
the multiple response loss or utility functions into a
single overall objective function. This means that the
DDM does not have to struggle with different engi-
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neering units or the conceptual challenge of combining
different types of responses into a single objective
function. Likewise, the DDM does not have to consider
the trade-off between off-target and variance compo-
nents of the same overall objective function. This effec-
tively shifts the required engineering judgment from the
front end of the optimization process to the end of the
process. With respect to response correlation structure,
this technique neither assumes response independence
nor exploits this source of statistical information.

4 The compromise decision support problem

Up to this point, all the multi-response optimization
techniques have been culled from the statistics literature.
To contrast these approaches with an example from the
engineering literature, we briefly review an important
multi-response technique, which evolved from experi-
mentation in the ship building and design industry. The
compromise decision support problem (cDSP) is a
mathematical construct with which the conflicting goals
in product design are resolved. The high-level descrip-
tion of the baseline, deterministic cDSP presented in
Fig. 1 and the following paragraphs are adapted from
Mistree et al. (1993).

The cDSP is a multi-objective decision model based
on mathematical programming and goal programming.
In the cDSP, values of design variables are determined
to achieve a set of conflicting goals to the best extent
possible while satisfying a set of constraints. The cDSP
simultaneously considers system variables, i.e., design
variables, system constraints, system goals, and devia-
tion variables. The system variables x¢=(x1,..., xp) usu-
ally describe design variables of the system and each
cDSP must have at least two system variables which may
be continuous, discrete, or Boolean. System variables
are bounded to help the designer use experience-based
judgment in formulating the problem.

System constraints and bounds define the feasible
design space and are functions of the system variables
only. The responses are assumed to be functions of the
system variables, i.e., Yi(x). The designer’s aspiration for
each response is represented by a system goal (Gi) and
the deviation variables d�i ; dþi

� �
are the level of under-

achievement or over-achievement of a goal, respectively.
The goals are modeled as constraints in the following
form:

wi xð Þ þ d�i � dþi ¼ Gi ð50Þ

The high-level aim of the cDSP is to minimize the
difference between the goal (Gi) of each objective and its
actual performance Yi(x). This is accomplished by
finding settings of the system variables that minimize the
deviation function (DF), the overall objective functionFig. 1 Baseline cDSP
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of the cDSP, which is a function of the deviation vari-
ables of the system goals.

The deviation function DF is defined for two cases
which differ in how they prioritize the system goals.
They are called the Archimedean and Lexicographic
weighting schemes. In the Archimedean approach, the
DDM explicitly assigns the weights x�i and xþi to reflect
the importance of the individual goals. Lexicographic
weighting (Ignizio 1982) does not require the DDM to
assign specific weights to the objectives. Rather, goals
are rank ordered in terms of their priority and deviation
variables in the highest priority goal are minimized first,
followed by the deviation variables in the second priority
goal, and so on.

The apparent strength of the cDSP is its handling of
highly constrained environments. It provides flexible
decision support for achieving a compromise among
multiple goals while satisfying constraints and bounds.
Although the baseline cDSP is deterministic, there exist
a number of extensions which reflect the cDSP’s nature
as a living construct, capable of being strengthened and/
or specialized through augmentation.

Bayesian and fuzzy logic versions of the cDSP (Vadde
et al 1994; Zhou et al. 1992) allow the DDM to use the
cDSP while accommodating uncertainty regarding con-

straints, values for goal targets, or weighting of goals in
the problem formulation. There are many other exten-
sions of the cDSP (Srinivasan et al. 1991; Karandikar
and Mistree 1991; Vadde et al. 1994; Seepersad 1997;
Seepersad et al. 2002). Of most relevance to this paper is
the RD formulation of the cDSP by Chen et al. (1996).

The approach of Chen et al (1996)—a cDSP-based
procedure called the robust concept exploration method
(RCEM)—is a domain-independent method for gener-
ating robust, multidisciplinary design solutions. The
RCEM employs experiment-based metamodels to allevi-
ate some of the computational difficulties associated with
probability-based robust design. The RCEM defines a
design process as either Type I or Type II, depending on
where variability arises in the design process.

Type I is a traditional RD with fixed design settings
and variability hailing from uncontrollable noise factors.
Type II is common to many engineering design simula-
tions where variability is injected around the nominal
values of the design variables, rather than emanating
from noise variables. Type II is particularly important in
the early stages of design since the design will likely
evolve over time and the desirable values of the system
variables will change, leading to uncertainty.

Both types use response surface models to approxi-
mate the expected value of each response. In Type I, the
mean response is estimated as a function of systemFig. 2 cDSP with RD Goal Formulations from Chen et al. (1996)
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variables and an average noise component from each
individual noise variable. In Type II, only the system
variables are considered. Hence, the noise information is
not exploited to the same extent as in the corresponding
loss function approaches, whose model terms for each
significant control–noise interaction allow a higher
degree of resolution.

Both Type I and Type II typically employ first-order
Taylor expansions to approximate variability. Taylor
expansions in Type I are a function of the variability of
individual noise factorswhileType II’s are associatedwith
the design factors. Depending on how well these first-or-
der Taylor expansions emulate the true variability, there
may be a loss of accuracy regarding the variability con-
tributions within the RCEM.

Like the desirability function and the non-domina-
tion search techniques, the RCEM makes no assump-
tions with respect to response correlation and does not
actively use that correlation structure in its optimization
algorithm. The RCEM mimics the dual response
approach (Vining and Myers 1990) in treating each
response’s location and dispersion as a pair of criteria
where one is optimized and the other is constrained.
Chen et al. (1996) demonstrate the RCEM in the design
of a solar powered irrigation system and mention other
successful applications.

As an example of goal formulation in the RCEM,
imagine a simple system with the three response charac-
teristics of power, efficiency, and weight. We wish to
design so that power is at a specific level, efficiency is
maximized, and weight minimized. These are, respec-
tively, nominal-the-best (NTB), larger-the-better (LTB),
and smaller-the-better (STB) goals per the Taguchi ter-
minology. The NTB goals seek design variable settings
bringing the response mean as close as possible to its
target while minimizing variance. The LTB goals seek to
maximize mean response while minimizing variance and
the STB goals minimize both mean and variance.
Assuming that there are no non-goal-related constraints,
Fig. 2 gives the cDSP formulation for the six goalsmaking
up this design problem.

5 Comparing the multi-response optimization techniques

In this section, we compare the attributes of expected loss,
desirability, the non-domination search, and the cDSP.

To compare the four methods discussed in this paper,
Table 1 adds the cDSP to the table in Loy et al. (2000).
Because all four approaches can handle the NTB, STB,
and LTB response types, this criterion is not included in
the table.

Since we have focused on the statistical and opti-
mizing properties of the approaches, the software and
computational resources necessary for carrying out the
optimization algorithms are not addressed in this paper.
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