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SUMMARY
One approach to solving multiple response engineering problems is to combine the individual responses into one
unifying objective. In utility theory, several characteristics are used to compare and contrast multiple objective
techniques. These are risk aversion, marginal rates of substitution, and the relationship of the responses in
the combined function. Perhaps unknown to the user, multiple response techniques carry strong assumptions
regarding these characteristics. This paper investigates four commonly-used multiple objective techniques and
demonstrates that each method contains assumptions about these characteristics which are not intuitively evident
to a user. Copyright  2001 John Wiley & Sons, Ltd.

KEY WORDS: multiresponse; optimization; multivariate; desirability

1. INTRODUCTION

Manufactured products are typically characterized by
numerous quality characteristics. This type of design
typically involves choosing a set of input factors that
will result in a product with the best combination of
these quality characteristics. Commonly this process
is referred to as multi-response design optimization
with the quality characteristics defined as the multiple
responses and denoted by Yi . The objective is to define
a set of factors that provides the best compromise
of the multiple responses simultaneously. The use
of multiple objective decision making (MODM)
techniques may be used to solve multi-response
engineering design problems.

A common approach to solving multi-response
design problems is a unifying objectives approach;
that is, the individual responses are mathematically
combined to form a single function. Unifying
objective approaches are used in the quality area to
simultaneously optimize several responses. Initially,
the individual responses are modeled by creating
a response surface from an experimental design.
The set of response surfaces is then subjected
to a mathematical transformation which acts as a
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normalizing agent so all responses can then be
combined into a single function. Ultimately, by
varying the levels of the input factors, an optimal
objective function and hence optimal input factor
settings can be obtained.

The optimization of a single response function is
straightforward using calculus-based methods, such
as gradient-based algorithms and Hooke and Jeeves
pattern searches. While there are several multi-
response techniques available, little has been said
regarding the implicit assumptions underlying these
techniques. The assumptions studied here are response
relationship in the combined function, marginal
rates of substitution, and user risk aversion; these
are defined in subsequent sections. These three
characteristics may be used to compare and contrast
multi-response optimization techniques. This paper
illustrates the effect of the implicit assumptions
of these characteristics on the optimal response
of four multi-response methods. In other words,
different optimal factor settings may result from the
combination of different multi-response methods and
different underlying assumptions. Multiple response
techniques are also investigated by Khuri and
Conlon [1], Vining [2], and Wurl and Albin [3] but
not with respect to the aforementioned characteristics.

The four multi-response optimization methods
studied are (i) the desirability method [4], (ii) the
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Table 1. Response parameters for the multiple response example

Response—description Min. Max. Target

Y1 = maximum temperature at position A 185 195 190
Y2 = beginning bond temperature at position A 170 195 185
Y3 = finish bond temperature at position A 170 195 185
Y4 = maximum temperature at position B 185 195 190
Y5 = beginning bond temperature at position B 170 195 185
Y6 = finish bond temperature at position B 170 195 185

modified desirability method [5], (iii) the Global
Criterion method [6], and (iv) the distance approach
proposed by Khuri and Conlon [1].

An example of a wire bonding process is used
to illustrate the effect of the implicit assumptions in
each of the methods. We use the multiple response
example of Del Castillo et al. [7] to illustrate these
concepts. The input variables in the experiment are
the N2 flow rate (x1), the N2 temperature (x2), and the
temperature of the heater block (x3). The goal of the
experiment is to find operating conditions that achieve
optimal temperatures during the bonding process
while not exceeding the melting temperature of the
plastic package. Six responses are observed during
the experiment, and Table 1 defines the responses and
the acceptable ranges. Del Castillo et al. [7] modify
the desirability function so that it is differentiable
everywhere and gradient-based optimization methods
can be used.

The following sections describe the four multi-
response optimization methods. In turn, the indepen-
dence conditions required by each of the methods
are uncovered and the marginal rates of substitution
for each approach are derived and the implications
discussed. Finally, it is shown that each of the four
approaches carries with it a distinct risk preference
structure, which in many cases is transparent to the
decision-maker.

2. MULTI-RESPONSE OPTIMIZATION
TECHNIQUES

2.1. The desirability method

The desirability method [4], shown in (1), is a
multiplicative model,

D = (d1d2d3 . . . dn)1/n (1)

See Stevens and Baker [8] and Layne [9] for
use of this method in industrial examples. D is
defined as the overall desirability, and di is defined
as an individual response desirability. The method

involves the conversion of responses, Yi , to desirability
functions, di , using a transformation. The value of
di increases as the desirability of the corresponding
response, Yi , increases. The rationale behind using the
multiplicative model is that if any one response di has
a low value (i.e., di ≈ 0) then the overall desirability
D will be unacceptable regardless of the values taken
on by the other response di’s.

The di’s take on values between 0 and 1. This
scale corresponds to a completely undesirable level of
quality when di = 0.00 and a completely acceptable
level of quality when di = 1.00. Harrington [4]
provides the following ‘subjective scale’ to guide
a quality engineer when assessing desirability: the
scale of di is a dimensionless scale so each term
can be interpreted in terms of desirability. Two
transformations lead to the development of the
individual di’s. The two-sided transformation is for the
case where a target value is sought. The desirability
is highest at this target value and decreases as a
response moves away from the target value in either
direction. The transformation from the measurement
of the property to the scale of d is accomplished using
an exponential equation,

d = e−(|Y ′|)n

(2)

where e is the logarithmic constant, n is a positive
number, and Y ′ is a linear transform of the response
variable. Harrington [4] uses a linear transform on Y ,

Y ′
i = 2Yi − (Ymax + Ymin)

Ymax − Ymin
(3)

The exponent, n, determines the slope of the curve
and as n becomes large the curve becomes more bell
shaped.

The one-sided transformation is used when a
response is to be maximized. In this case, the
desirability increases as the response increases. Low
values of desirability are analogous to low levels of
a response. Harrington [4] chooses a special form
of exponential function to model desirability: the
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Gompertz growth curve, which is represented as

di = e−(e−Y ′
) (4)

In this equation the slope is determined by the
scaling of Y onto Y ′. The scaling is accomplished
by selecting two values of the response, Y , and
assigning desirability levels. These desirability levels
are transformed to their equivalent Y ′ by the equation

Y ′ = −[ln(− ln d)] (5)

From these paired values of Y and Y ′, the linear
transformation equation of the form Y ′ = b0 + b1Y is
easily derived by calculating the two constants, b0 and
b1, by substitution. The shape of the desirability shifts
as the level of b0 and b1 change. Many researchers
find the S-shaped characteristics of the curve model
an individual’s utility very accurately.

2.2. The modified desirability method

This method by Derringer and Suich [5] is also a
multiplicative method and defined as

D = (d
w1
1 d

w2
2 d

w3
3 . . . dwn

n )1/wi (6)

where wi is defined as a response weight. This is a
weighted composite desirability, and the concepts and
function of D and di are identical to the Desirability
method.

Derringer and Suich [5] propose another type of
one-sided transform given by

di =



0 Yi ≤ Yi-min[
(Yi −Yi-min)

(Yi-max−Yi-min)

]r

Yi-min ≤ Yi ≤ Yi−max

1 Yi ≥ Yi-max
(7)

where Yi is the predicted value for response i, Yi-min is
the minimum acceptable value for response i, Yi-max is
the maximum acceptable value for response i, and r is
a weight used to determine scale of desirability (e.g., a
larger r is used if it is very desirable for Yi to be close
to Yi-max).

For the two-sided case, the transformation is

di =



[
(Yi − Yi-min)

(τi − Yi-min)

]s

if Yi-min ≤ Yi ≤ τi[
(Yi − Yi-max)

(τi − Yi-min)

]t

if τi ≤ Yi ≤ Yi-max

0 otherwise

(8)

where s and t , are user-specified weights the allow the
decision maker to specify the underlying form of the
desirability function.

While the Derringer and Suich transformation looks
similar to Harrington’s presentation of the Gompertz
transformation, each has assumptions regarding the
underlying structure of the desirability. Namely,
Derringer and Suich assume a linear function that can
be shaped using a power factor; while the Gompertz
transformation uses an exponential function that can
be weighted.

2.3. The Global Criterion method

Unlike the multiplicative methods, the Global
Criterion method [6] uses an additive function to
combine the individual responses as given in (9),

F =
k∑

i=1

[
(Yi − Yi−min)

(Yi-max)

]p

(9)

This method uses a ratio of the sum of the deviations
of the values of the individual objective functions
from their respective target values to that of the target
values. From the set of objective functions, a single
objective function is then formulated and solved using
univariate optimization techniques.

For the maximization of a response, the transforma-
tion is

di =
[

(Yi − Yi-min)

(Yi-max)

]p

(10)

where Yi-max is the value of the objective function i

at its maximum acceptable level, Yi-min is the value
of the objective function i at its minimum acceptable
level and Yi is the predicted value of response i.
p is a weight used to determine scale of importance.
Setting p = 1 gives equal importance to all deviations,
whereas p = 2 gives more weight to larger deviations.

It can be seen from (10) that Yi-max is a constant and
can be factored out, which yields

di = 1

(Yi-max)p
[(Yi − Yi-min)]p (11)

and substituting ki for 1/(Yi-max)p,

di = ki[(Yi − Yi-min)]p (12)

This representation is a simple linear function
anchored at a maximum level of the response. In the
case where i = 1 to 3 the global criterion approach
resembles a weighted additive model. This can be seen
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as follows,

F =
[

1

(Y1-max)

]
d1 +

[
1

(Y2-max)

]
d2

+
[

1

(Y3-max)

]
d3 (13)

The term [1/(Yi-max)] can be interpreted as the weight
associated with each response.

2.4. The Khuri and Conlon distance measure

The Khuri and Conlon (henceforth, KC) distance
measure [1] is also an additive function:

D̂KC(x) =
√

[Ŷ (x) − τ ]′ Var[Ŷ (x)]−1[Ŷ (x) − τ ]
(14)

where the term Var[Ŷ (x)] is a p × p matrix of
the variance of the prediction models of Y (x). To
understand the structure of the model, one should
consider the case where an experimenter has p

uncorrelated response variables. Allowing σ 2
i = the

variance of Yi and V̂ar[Ŷ (x)] = z′(x)(X′X)−1z(x)̂,
equation (14) reduces to

D̂KC(x) =
 1

v(x)

p∑
i=1

(
[Ŷi(x) − τi]

σi

)2
1/2

(15)

where v(x) = z′(x)(X′X)−1z(x). This model uses the
squared deviations of the response characteristics from
their targets, but then normalizes these deviations by
the variance of the response predictions.

Khuri and Conlon [1] propose this method for
determining the response targets, τi . For response
variables where the target is smaller-is-better (larger-
is-better), τi is set equal to the minimum (maximum)
of the response over the experimental region. In
the case of target-is-better, the value for τi is set
equal to the target if there exists a setting within the
experimental region that yields τi .

Khuri and Conlon [1] do not explicitly use a
transformation as the previous methods do. Instead,
the distance metric itself implicitly assigns a
transform. This is seen directly in the uncorrelated
case developed in (15). The implicit transform is
very similar to the transform in Tabucanon [6]. It is
the squared value of an underlying linear function.
Allowing

di =
(

[Ŷi(x) − τi ]
σi

)2

(16)

it is clearly seen that σi is a constant and can be
factored out, therefore the same relationship as in (12)
is realized.

The model accounts for the correlations between
the responses by employing the variance/covariance
structure of the distance metric. As we will show
later, this fact also allows the variance/covariance
structure to dictate the marginal rates of substitution
or sensitivity between the responses.

3. RESPONSE RELATIONSHIP IN THE
COMBINED OBJECTIVE FUNCTION

This section looks at the relationships between the
responses that are implicit in the multi-response
optimization methods. In general, multi-response
optimization methods employ either a strictly additive
function or strictly multiplicative function [10]. The
desirability and modified desirability methods are
multiplicative, while the global criterion and KC
distance measure methods are additive models.

Using the data from the Del Castillo et al. [7]
experiment, optimal sets of input factors and responses
were derived for each of the four unifying methods.
Table 2 displays the optimal response settings. The
left-hand column displays the optimum values for the
factor settings (x1, x2, x3) both in coded form and
uncoded form, along with the associated response
settings (Y1, Y2, Y3, Y1, Y2, Y3) for each model.

The advantage of the additive functions is that the
responses are simply summed. However, this may
have the effect of driving the optimal factor settings
to their extreme values instead of the target values.
On the other hand, the multiplicative tend toward
the target, and the multiplicative functions derive a
solution based on the relationship between responses.

As the optimization process takes place, the
multiplicative functions tend to move away from
the minimum and maximum values of the input
factors. In short, if any one response is pushed to
a maximum or minimum value, the corresponding
individual desirability will tend towards zero resulting
in a lower overall desirability.

This is noticeable when the final response values,
Yi , are examined in Table 2. It can be seen that the
desirability and modified desirability methods have
one optimal set of input factor settings. Conversely,
two optimal combinations of factor settings exist for
the Global Criterion and KC distance methods. In
addition, none of the responses in the desirability
methods are at their minimum or maximum values.
However, in the case of the additive models there is at
least one case in each solution where a response is set
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Table 2. Optimal response settings

Modified KC
Results Desirability desirability Global criterion distance measure

Coded
x1 0.1043 0.0636 0.2129 0.6677 0.1756 1.0000
x2 1.0000 1.0000 1.0000 0.9132 1.0000 0.8616
x3 0.7966 0.7785 0.8654 0.5579 0.8654 0.7901

Uncoded
x1 84.17 82.54 88.51 106.71 87.02 120.00
x2 450.00 450.00 450.00 439.15 450.00 432.70
x3 329.66 327.85 336.54 305.79 336.54 329.01

Response settings
Y1 186.06 186.34 185.00 188.62 185.00 185.00
Y2 174.49 173.99 176.12 172.63 175.89 176.79
Y3 172.02 171.37 174.17 170.00 173.89 176.17
Y4 192.63 191.72 195.00 195.00 194.36 194.88
Y5 173.04 172.32 175.23 171.27 174.87 174.30
Y6 184.95 184.10 187.71 180.56 187.41 186.63

at its minimum or maximum value and/or extremely
close to its minimum or maximum. These cases are
highlighted in bold in Table 2.

4. MARGINAL RATES OF SUBSTITUTION

Within mathematical programming, substitution or
trade-off information is referred to as dual infor-
mation. In situations with convex settings, Lagrange
multipliers are used to describe the trade-offs be-
tween alternatives. In economics, these trade-offs are
commonly defined as marginal rates of substitution
and usually given as prices. Prices, for example,
are the basis for what one commodity or service is
worth compared to another commodity or service (see
Keeney and Raiffa [10], Bogetoft and Pruzan [11], and
Nakayama and Sawaragi [12]).

In the context of a multi-response quality design
problem, this translates into how much of one response
a user is willing to give up in order to acquire
one unit of another response or the sensitivity of
the responses with regard to one another [2]. Thus,
trade-off information or marginal rates of substitution
are highly useful in multi-response quality design
problems for they determine how a decision maker
feels about one response weighed against another
response.

The desirability function contains some unique in-
formation regarding the trade-offs between responses.
As stated earlier, the desirability function is a mul-
tiplicative function where the scaling constants are
identical and equal to 1/n. The scaling constants in
the multiplicative function represent the marginal rate

of substitution for the responses. For example, the
marginal rate of substitution, λ, of u(d1, d2) is roughly
the amount of d1 one can forego for a unit of d2. The
marginal rate of substitution can be obtained from

λdi ,dj = ∂udi (d1, d2, . . . , dn)

∂udj (d1, d2, . . . , dn)
(17)

For the desirability function, the marginal rate of
substitution for any λ of u(d1, d2, . . . , dn) is as follows
for i > 1, j > 1, and i �= j ,

λdi ,dj = ∂udi (d1, d2, . . . , dn)

∂udj (d1, d2, . . . , dn)
= 1/n

1/n
= 1 (18)

Therefore, the marginal rate of substitution for all
attributes di in the desirability approach are equal. In
other words, the decision maker is willing to give up
an equal amount of one attribute to gain that amount
in another attribute.

Completing the same marginal analysis using the
modified desirability method, a different conclusion is
reached. Using (17), the marginal rates of substitution
for any λ of u(d1, d2, . . . , dn) for i > 1, j > 1,
and i �= j are unique, therefore, the marginal rates
of substitution are

λdi,dj = ∂udi (d1, d2, . . . , dn)

∂udj (d1, d2, . . . , dn)
= wi/wn

wj /wn

= wi

wj

(19)

From this general relationship, it is seen that the
marginal rate of substitution between two responses
is the ratio of the exponents chosen in (6).

The Global Criterion method contains implicit
marginal rates of substitution based on a responses
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Table 3. Marginal rates of substitution for response pairs

Method

Response Modified Global KC KC
pairs Desirability desirability criterion uncorrelated correlated

1–2 1 2 3.9 × 10−53 0.521278
1–3 1 2 1.8 × 10−52 0.42494
1–4 1 1 5.4 × 10−54 −0.66516
1–5 1 2 7.3 × 10−53 0.473527
1–6 1 2 5.5 × 10−55 −2.84276
2–3 1 1 4.65131 1.001776
2–4 1 0.5 0.13999 −3.56395
2–5 1 1 1.87166 1.006732
2–6 1 1 0.01422 0.993577
3–4 1 0.5 0.0301 −4.57037
3–5 1 1 0.40239 1.005339
3–6 1 1 0.00306 1.156903
4–5 1 2 13.3699 −0.25488
4–6 1 2 0.10157 1.195392
5–6 1 1 0.0076 1.166512

maximum value, minimum value, and the value of the
response at a specific point. From (9), the marginal
rates of substitution for any λ of u(d1, d2, . . . , dn) for
i > 1, j > 1, and i �= j are unique. In general, the
marginal rates of substitution are

λdi,dj = ∂udi (d1, d2, . . . , dn)

∂udj (d1, d2, . . . , dn)

= (Yj − Yj -min)[(Yi − Yi-min)/(Yi−max)]P
(Yi − Yi-min)[(Yj − Yj -min)/(Yj−max)]P

(20)

These rates are subject to (Yi − Yi-min) �= 0 and
(Yj − Yj -min) �= 0.

Initially, some interesting conclusions regarding
(20) can be made. The two quantities, [(Yi −
Yi-min)/(Yi-max)]P and [(Yj −Yj -min)/(Yj -max)]P will
always fall between 0 and 1.0 for all values of P .
With these quantities defined as such, the ratio of the
quantities at values close to the respective maximum
responses will be negligible. The rates are heavily
weighted then by the magnitude of (Yi − Yi-min) the
(Yj − Yj -min) terms.

The KC distance measure employs the same
underlying additive transformation, but base their
procedure on a distance function, which incorporates
a variance–covariance matrix. This will result in two
marginal rates of substitution: one for uncorrelated
variables and one for correlated variables. Using
(17), the marginal rates of substitution for any λ of
u(d1, d2, . . . , dn) for any given i > 1, j > 1, and
i �= j , are unique. Therefore, for the uncorrelated case,

given, τι = target i, i = 1, and j = 2,

λd1,d2 = ∂ud1(d1, d2, . . . , dn)

∂ud2(d1, d2, . . . , dn)
= σ 2

2 (Y1 − τ1)

σ 2
1 (Y2 − τ2)

(21)

What is seen in (21) is a ratio of the distance from the
target for each response is multiplied by the ratio of
the variance of the second response to the variance to
the first response.

In the correlated case, the marginal rates of
substitution for any λ of u(d1, d2, . . . , dn) for any
given i > 1, j > 1, and i �= j , are unique. Therefore,
for the correlated case, given, τι = target i, i = 1, and
j = 2,

λd1,d2 = ∂ud1(d1, d2, . . . , dn)

∂ud2(d1, d2, . . . , dn)

= σ 2
2 [σ 2

12(Y1 − τ1) + σ 2
1 (Y2 − τ2)]

σ 2
1 [σ 2

12(Y2 − τ2) + σ 2
2 (Y1 − τ1)] (22)

This is similar to (21) but now includes the correlated
elements. Table 3 displays the marginal rates of
substitution for each of the response pairs. From the
Del Castillo et al. (1996) example, response 1 and 4
are correlated, as well as 2, 3, 5, and 6 .

For the desirability method, all marginal rates of
substitution are 1.0 as given in (18). The rates in the
modified desirability model differ from (18) only in
that responses 1 and 4 were weighted twice as much as
responses 2, 3, 5, and 6. When comparing the tradeoffs
calculated for the Global Criterion method it is seen
that they differ in every case. These values are in bold.
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From Table 3 it should be noted that a number of
the marginal rates of substitution are close to zero or
deviate from zero. In the case of the Global Criterion
and KC methods, this is due to the underlying trade-
off relationship. It is seen in (20), (21), and (22) that
the marginal rate of substitution is tied to the target
value of the response of interest. When the response
of interest is close to the target, the marginal rate of
substitution is small or close to zero (e.g., pairs 1 to
2 for the Global Criterion method). Conversely, as the
response of interest moves away from the target value,
the marginal rate of substitution moves away from
zero (e.g., pairs 4 to 5 for the Global Criterion and
pairs 3 to 4 for the KC uncorrelated methods).

For the multiplicative methods, the response
tradeoffs are either constant or based on the exponents
chosen by the user. A user must consider the non-
constant nature of the trade-offs between responses
when using the Global Criterion method. The marginal
rate of substitution for the KC distance method
depends on two items: the correlation between
responses and the magnitudes of the elements in the
covariance matrix.

5. IMPLICATIONS WITH REGARD TO RISK
PREFERENCE BEHIND THE UNIFYING

METHODS

In the unifying objective approaches, the risk aversion
of a decision maker is also implicitly defined.
A distinct risk preference is associated with each
transformation that is performed on a response. This
section discusses how to measure risk aversion and
derives the risk structures for the transformations used
in each underlying desirability function. Four types
of functions are presented and analyzed: a Gompertz
or S-shaped function, a linear function, a convex
function, and a concave function. Note that while the
KC distance method does not specify a transformation,
the implicit transform mirrors the Global Criterion
transform for the uncorrelated case. For the modified
desirability function these functions are obtained by
adjusting the weights in (7) and (8). For example,
by setting r , s, and/or t to 1.0 the linear function is
realized. In setting r , s, and t to a value less than 1.0
but greater than 0.0 the concave function is realized,
while setting r , s, and/or t to a value greater than 1.0
the convex function is realized.

Within utility theory, there exists different sets
of theorems that define the risk aversion of a
utility function u(Y ). Keeney and Raiffa [10] give
the following definition as a measure of local risk

aversion, r(Y ), for a utility function u(Y ),

r(Y ) = u′′(Y )

u′(Y )
(23)

Alternatively,

r(Y ) = − d

dx
[log u′(Y )] (24)

and define the following theorems with respect to r(Y )

for interpretation purposes:

Theorem 1. The utility function u is risk neutral iff
the associated risk aversion r is zero. A person is said
to be risk neutral if they behave in the same manner
regardless of the monetary value of the decisions.

Theorem 2. The utility function u is increasingly risk
averse iff the associated risk aversion r is positive
and increasing. A person who is increasingly risk
averse behaves more and more conservatively as the
monetary value of the decisions increase.

Theorem 3. The utility function u is increasingly risk
prone iff the associated risk aversion r is negative and
decreasing. A person who is increasingly risk prone
tends to gamble more as the monetary value of the
decisions increase.

With this definition of local risk aversion and the
subsequent theorems, the risk aversion implied within
the transformations recommended by the underlying
desirability functions can now be identified.

The desirability method uses the Gompertz growth
curve transformation as defined in (4) with a linear
function:

di = exp(−(exp − (b0 + b1Yi))) (25)

where b0 > 0, b1 > 0, Yi > 0, and di = u(Yi).
Therefore, the local risk aversion, r(Yi), at Yi is

r(Yi) = −b1 + b1 exp[−(b0 + b1Yi)] (26)

Thus, r(Yi) < 0 and decreases for all Yi on
[0, Yi-max). Yi-max is the maximum acceptable value
for response i. By Theorem 3, the utility function
u(Yi) is increasingly risk-prone. When using the
Gompertz transformation it is always assumed that
the decision maker is increasingly risk-prone. In other
words, the decision maker is willing to gamble more
and more if the payoff is greater in each instance.

For the modified desirability method, allowing the
exponents, r = s = t = R, and τ = target, the local
risk aversion is as follows for the one-sided transform

r(Yi) = (R − 1)

(Yi − Yi-min)
for Yi ≥ Yi-min (27)
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Table 4. Response settings for three underlying desirability
transformations

Transformation
type

Risk Risk Risk
Response neutral taking averse

Y1 186.06 186.11 185.94
Y2 174.49 174.67 174.64
Y3 172.02 172.22 172.22
Y4 192.63 193.30 192.79
Y5 173.04 173.37 173.23
Y6 184.95 185.17 185.21

and the two-sided transform

r(Yi) =


(R − 1)

(τ − Yi-min)
for Yi ≤ τ

(R − 1)

(τ − Yi-max)
for Yi ≥ τ

(28)

and therefore, for all cases, when R > 1, r(Yi) >

0 and increases for all Yi on [0, Yi-max). Yi-max is
the maximum acceptable value for response i. From
Theorem 2, the utility function u(Yi) is increasingly
risk-averse. However, when R < 1, r(Yi) < 0 and
decreases for all Yi on [0, Yi-max), Theorem 3 states
that the utility function u(Yi) is increasingly risk-
prone. In the case where R = 1, (27) and (28) is
used and from Theorem 1, when r(Yi) = 0 the utility
function u(Yi) is risk neutral.

Therefore, a user can dictate the risk characteristics
of the underlying desirability function by specifying
the value of the exponent r in the transform. This
concept addresses Derringer and Suich’s suggestion
that Harrington’s transformations are not flexible in
the sense that the functions cannot assume a variety
of shapes. In varying the shape of the underlying
desirability function, a decision maker assigns a level
of risk preference.

In summary, when using the Gompertz transforma-
tion it is always assumed that the decision maker is
increasingly risk-prone. For the modified desirability
and global criterion transformations, the same as-
sumptions regarding risk apply. For these transforma-
tions, the risk preference is based on the value of the
exponent R used. In the case where R > 1, a decision
maker is increasingly risk-averse, for R < 1 a decision
maker is increasingly risk-prone, and for R = 1 a
decision maker is risk-neutral.

Table 4 displays the response settings for the
Del Castillo example using the desirability method
and three different underlying transformations, risk

neutral, risk taking, and risk averse. A user should be
cognizant of the underlying transformation a method
is using as it implicitly assigns risk preference.
However, it can be seen for the Del Castillo example
that the use of different underlying transformations
has little effect on the response settings for this
application. It must be noted that this is a result
from only one application, and it is imperative that
a user understands what the risk preference is of the
underlying transformation being used.

6. SUMMARY

The idea of unifying objectives is to transform a
multi-response design problem into a single response
problem using mathematical transformations. Four
unifying approaches are studied in this paper. Each
of these methods contains assumptions regarding
a user’s risk preference, response relationship, and
the marginal rate of substitution, and a user should
understand these assumptions before implementing
any of the methods.

In the desirability method, the Gompertz growth
transformation assumes that the decision maker
is increasingly risk-prone. It is also equivalent
to an additive utility function. This fact has
implications due to the response independence
conditions of the additive utility function. Specifically,
the model assumes that a user’s utility depends
only on the marginal probability distributions of the
respective attributes and not on their joint probability
distribution. Finally, the marginal rate of substitution
for all attributes is equal. Therefore, it is assumed that
the decision maker is willing to give an equal amount
of one response to gain the same amount of another
response.

In the case of the modified desirability method, the
transformation assumes the following based on the
exponent R.

• If R > 1 then the decision maker is assumed to
be increasingly risk-averse.

• If R < 1 then the decision maker is assumed to
be increasingly risk-prone.

• If R = 0 then the decision maker is assumed to
be risk-neutral.

This method is also equivalent to the additive utility
function and has the same implications as above.
Finally, the marginal rate of substitution is a ratio of
the exponential weights for each attribute in (19). This
assumes the rates are constant but not all equal, and a
decision maker has complete control over what those
rates will be when assigning the exponents.
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The Global Criterion transformation leads to the
same assumptions regarding a user’s risk preference
and response independence as the modified desir-
ability method above. However, in the uncorrelated
case of the KC method, we see an underlying linear
transform raised to the second power, i.e. R > 1,
and the decision maker is increasingly risk averse. The
marginal rates of substitution for the Global Criterion
approach are a function of the response itself. For the
KC method, it is a function of either the variance
structures in the uncorrelated case (see (21)) or the
variance and covariance structures in the correlated
case (see (22)).

In selecting a multiple response approach, the
method predisposes the user’s perspective with respect
to risk preference, response independence, and re-
sponse trade-offs. The user should be knowledgeable
about their preferences as well as the assumptions
behind the methods.
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