Manutenção Centrada em Confiabilidade (MCC)

Flávio S. Fogliatto

OS

Desenvolvimento dos conceitos associados ao MCC

- ◆ Derivados da análise das políticas de manutenção na indústria aérea americana de 1960 até 1970
- ◆ Determinação das melhores políticas p/ gerenciar as funções dos itens físicos e as consequências de suas falhas
- ◆ Nos últimos 20 anos, a MCC disseminou-se no setor industrial

Origem MCC

- ◆ Anos 50: disciplinas de engenharia da confiabilidade
- ◆ Objetivo: estimar a confiabilidade de
 - componentes,
 - sistemas mecânicos e
 - sistemas elétricos (principalmente).

2

Disseminação da MCC deveu-se aos altos custos da manutenção

- ◆ P/ combater altos custos, atividade de manutenção passou a ser vista com planejamento e controle, visando aumentar a vida útil dos itens físicos.
- ◆ MCC passou a ser empregada:
 - para garantir confiabilidade dos itens físicos;
 - como uma metodologia essencial no planejamento da manutenção preventiva.

3

_

Lógicas de decisão da MCC propostas na literatura

- ◆ Versão original de Nowlan e Heap (1978)
- ♦ Versão oficial do MSG-3 usada pelas companhias aéreas civis
- ◆ Versão militar US MIL-STD-2173 usada pelo Comando dos Sistemas Navais dos EUA
- ◆ Versão RCM 2, c/ abordagem diferente da de Nowlan e Heap (1978) c/ relação a segurança ambiental.

5

MCC representa uma evolução da Manutenção Tradicional

- ◆ Principal objetivo do MCC: reduzir os custos da manutenção.
- ◆ Foca nas funções mais importantes do sistema

evita ou remove tarefas que

não são estritamente necessárias

Objetivos da MCC

- ◆ Aumentar a confiabilidade do item físico no qual é aplicado:
 - Tal confiabilidade é função da qualidade do programa ou plano de manutenção
- ◆ MCC = metodologia sistemática utilizada p/ otimizar as estratégias de manutenção planejada:
 - Visa minimizar custos de manutenção corretiva, preventiva e por melhoria

(

Para culminar em tal objetivo, a MCC

Identifica os modos de falha que afetam as funções

Determina a <u>importância</u> de cada falha funcional a partir de seus modos de falha

Seleciona as <u>tarefas</u> aplicáveis e efetivas na prevenção das falhas funcionais

Foco da MCC

- ◆ Preservar a função do sistema, ao invés de restabelecer o item físico para uma condição ideal:
 - Preservar a função não é o mesmo que preservar a operação de um item
- ◆ Além do enfoque tradicional, a MCC pode estender a sua análise p/ cobrir tópicos e problemas de suporte logístico e até mesmo na gestão de peças sobressalentes.

Resultados esperados com a implementação da MCC

- ◆ Maior segurança humana e proteção ambiental;
- ◆ Melhoria do desempenho operacional em termos de quantidade, qualidade do produto e serviço ao cliente;
- ◆ Maior efetividade do custo da manutenção;

10

Mais resultados esperados com a implementação da MCC

- ◆ Aumento da vida útil dos itens físicos mais dispendiosos;
- ◆ Criação de um banco de dados completo sobre a manutenção;
- ◆ Maior motivação do pessoal envolvido com a manutenção; e
- ◆ Melhoria do trabalho em equipe.

Definições

- ◆ O processo da MCC e a utilização das ferramentas de apoio exigem o entendimento de definições associadas a falhas e desempenhos dos itens físicos:
 - Funções
 - Padrões de Desempenho
 - Contexto Operacional
 - Falhas Funcionais e Potenciais
 - Modos de Falha

Definidos na sequência

Funções

- ◆ Função = qualquer propósito pretendido para um processo ou produto;
- ◆ Aquilo que o usuário quer que o item físico ou sistema faça;
- ◆ Sua definição deve consistir de um verbo, um objeto e o padrão de desempenho desejado.

13

Funções de um item físico

FUNÇÕES

Principais

Secundárias

Inicia-se sempre o processo de MCC pelas funções principais

14

Funções Principais

- ◆ Estão associadas principalmente à razão pela qual o ativo foi adquirido:
 - Os itens físicos são geralmente adquiridos para uma, possivelmente duas e não mais do que 3 funções principais

O principal objetivo da manutenção é assegurar o desempenho mínimo das funções principais.

Funções Secundárias

- ◆ São as outras funções que um item exerce:
 - integridade ambiental;
 - segurança/integridade estrutural;
 - controle, contenção e conforto;
 - aparência;
 - economia e eficiência;
 - supérfluas.

Funções Secundárias

- ◆ São geralmente menos importantes que as funções principais.
- ◆ Devem ser muito bem analisadas, pois podem trazer graves conseqüências em situações específicas.

Padrões de Desempenho

- ◆ Os equipamentos são projetados e desenvolvidos para assegurar um padrão mínimo de desempenho.
- ◆ Porém, em virtude do trabalho executado pelas máquinas, seus componentes acabam deteriorando-se.

18


Padrões de Desempenho

Qualquer máquina ou componente que for colocado em operação deverá ser capaz de produzir mais do que o padrão mínimo de desempenho desejado pelo usuário.

Esse limite de produção do equipamento é conhecido como capacidade inicial ou confiabilidade inerente do equipamento.

Item passível de manutenção

◆ Desempenho desejado deve situar-se na zona entre:

◆ A manutenção não pode elevar a capacidade inicial, mas deve manter o desempenho sempre acima do padrão de desempenho mínimo desejado pelo usuário.

19

17

Determinação

♦ capacidade inicial

♦ desempenho mínimo

é de relevante importância quando se deseja desenvolver um programa de Manutenção Centrada em Confiabilidade. Contexto Operacional

- ◆ Está associado às condições (funções) nas quais o ativo físico irá operar;
- ◆ Se insere inteiramente no processo de formulação estratégica da manutenção;
- ◆ Afeta as funções principais e secundárias, a natureza dos modos de falha, de seus efeitos e conseqüências.

22

Fatores para a compreensão do Contexto Operacional

- processos em lote e em fluxo;
- ◆ redundância;
- ◆ padrões de qualidade;
- ◆ padrões ambientais;
- ◆ padrões de segurança;
- ♦ turnos de trabalho;

- ♦ trabalho em processo;
- ◆ tempo de reparo;
- ◆ peças de reposição;
- ♦ demanda de mercado;
- suprimento de matériaprima.

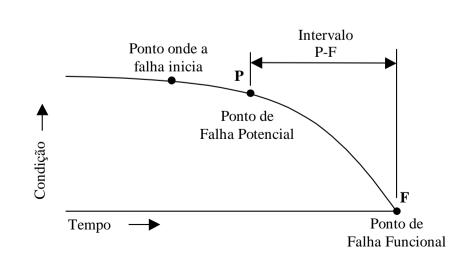
Falhas Funcionais

- ◆ Incapacidade do item físico de fazer o que o usuário quer que ele faça.
- ◆ Essa definição é vaga, pois não distingue claramente entre:
 - estado de falha (falha funcional)
 - eventos (modos de falha) que causam o estado de falha.
- ♦ É preferível definir falhas em termos de perda da função específica, ao invés do item como um todo.

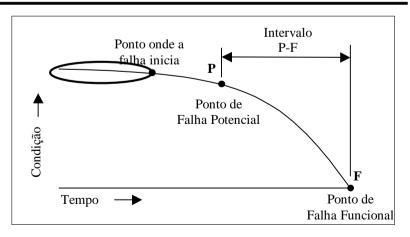
Falhas Funcionais

- ◆ Para descrever estados de falha ao invés de falha. é necessário um melhor entendimento dos padrões de desempenho.
- ◆ Aplicando os padrões de desempenho às funções individuais, a falha enfocada, em termos de falha funcional, é definida como a incapacidade de qualquer item físico cumprir uma função para um padrão de desempenho aceitável pelo usuário.

25

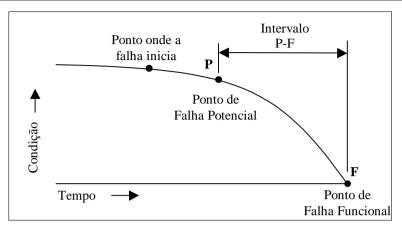

27

Falhas Potenciais

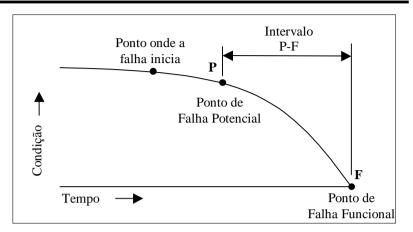

- ◆ Condição identificável que indica se a falha funcional está para ocorrer ou em processo de ocorrência.
- ◆ Consideram que muitas falhas não acontecem repentinamente, mas se desenvolvem ao longo do tempo.
- Representam o ponto onde o item físico começa a apresentar perda do desempenho da função.
- ◆ Perda parcial da função, estipulada com base em um padrão de desempenho estabelecido.

26

Relação entre Falha Potencial X Falha Funcional



Períodos de tempo distintos na ocorrência de uma falha


(i) período de tempo entre uma condição normal de operação até o início da falha;

Períodos de tempo distintos na ocorrência de uma falha

(ii) um segundo período de tempo entre o início da falha até o aparecimento de um sinal da falha;

Períodos de tempo distintos na ocorrência de uma falha

(*iii*) um terceiro período de tempo que se estende desde o aparecimento do sinal da falha até a sua ocorrência.

30

Modo de Falha

- ◆ É qualquer evento que possa levar um ativo (sistema ou processo) a falhar;
- ◆ Está associado as prováveis causas de cada falha funcional;
- ◆ São eventos que levam, associados a eles, uma diminuição parcial ou total da função do produto e de suas metas de desempenho.

Descrição de um Modo de Falha

◆ Deve consistir de:

SUBSTANTIVO + VERBO

◆ Deve-se observar, no entanto, que a escolha do verbo a ser usado deve ser realizada com cuidado, pois influencia fortemente o gerenciamento das falhas.

Modos de Falha

- ◆ A identificação dos modos de falha de um item físico é um dos passos mais importantes no assegurar qualidade.
- ◆ Quando em um sistema ou processo cada modo de falha foi identificado, torna-se possível verificar suas consequências e planejar ações para corrigir ou prevenir a falha.

Modos de Falha

- ◆ Normalmente são listados de 1 a 30 modos de falha como causas da falha funcional, dependendo:
 - da complexidade do item físico,
 - do contexto operacional e
 - do nível em que está sendo feita a análise,

34

33

Modos de Falha Típicos

◆ fratura

◆ desbalanceamento

♦ separação

◆ rugosidade

♦ deformação

♦ desalinhado

◆ desgaste

♦ trincamento

◆ corrosão

♦ mal montado

◆ abrasão

♦ encurtamento

Para que uma certa falha conduza a um modo de falha em particular deve existir algum mecanismo de falha (processo metalúrgico, químico, térmico ou tribológico).

Classificação dos Modos de Falha

- quando a capacidade reduz-se abaixo do desempenho desejado;
- quando o desempenho desejado fica acima da capacidade inicial;
- quando o item físico não é capaz de realizar o que é desejado.

Abordagens para levantar os Modos de Falha

- ◆ abordagem estrutural;
- ◆ abordagem funcional.

é genérica, não necessita de especificações ou de engenharia. Pode ser tratada como uma não-função.

Modos de Falha para um eixo

Componente	Abordagem	Função	Modo de Falha
Eixo	Funcional	Transmitir movimento, torque.	Não transmite movimento, não transmite torque
Eixo	Estrutural	Transmitir movimento, torque.	Ruptura, empenamento, desgaste.

38

Modos de Falha

- ◆ Abordagem estrutural: necessita de informações de engenharia, as quais, muitas vezes, não estão facilmente disponíveis.
- ◆ Abordagem funcional e a estrutural: é muito importante que se tenha bem definida a função do componente, pois é a referência para se verificar quando o item está em falha ou não.

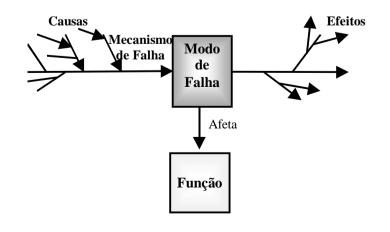
Causa da Falha

- ◆ A causa da falha pode estar associada a:
 - falha de projeto;
 - defeitos do material;
 - deficiências durante o processamento ou fabricação dos componentes;
 - defeitos de instalação e montagem;
 - condições de serviço não previstas ou fora de projeto;
 - deficiências da manutenção; ou
 - operação indevida.

Efeitos da Falha

- ◆ Descrevem o que acontece quando um modo de falha ocorre.
- ◆ Alguns efeitos típicos em máquinas e equipamentos em geral são:
 - esforço de operação excessivo;
 - vazamento de ar;
 - desgaste prematuro;
 - consumo excessivo, etc.

Efeitos da Falha


O que acontece quando o modo de falha ocorre?

Conseqüência da Falha

Quais são as conseqüências quando o modo de falha ocorre?

Interações

◆ Interligação entre Função, Modo de Falha, Causa Potencial e Efeitos

Consequências das Falhas

- ◆ Falhas podem afetar:
 - produção,

41

43

- qualidade do serviço ou do produto,
- segurança e
- meio ambiente.
- podem incorrer em aumento de custo operacional e consumo de energia.
- ◆ A combinação do contexto operacional, dos padrões de desempenho e dos efeitos, indicam que cada falha tem um conjunto específico de consequências a ela associadas.

Continuação...

- ◆ Consequências da falha são mais importantes do que suas características técnicas.
- ◆ Qualquer tarefa só deve ser aplicada se tratar (com sucesso) consequências da falha e meios de evitálas.

45

Continuação...

Falhas Evidentes

 \prod

aparente p/ o grupo de operação ou manutenção

П

Causando parada de máquinas, e perda de qualidade. Podendo ser acompanhada de efeitos físicos Falhas Ocultas

П

ninguém percebe o estado de falha

Não têm impacto direto, porém expõem a empresa a falhas múltiplas c/ conseqüências graves

46

Continuação...

Custos operacionais.

1 - Segurança humana e

ambiental

Morte;
Ferimentos;
Poluição.

2 - Operacionais

2 - Operacionais
Produção total;
Qualidade do produto;
Serviço de atendimento ao cliente:

CONSEQÜÊNCIAS
DA
FALHA

3 - Não operacionais
Perdas de oportunidade;
Perdas de competitividade.

Medidas de Confiabilidade Aplicadas na MCC

◆ Tempo médio entre falhas (MTBF)

$$MTBF = \frac{1}{\lambda}$$

Onde λ designa a taxa de falhas do item

47

Padrões de Falha

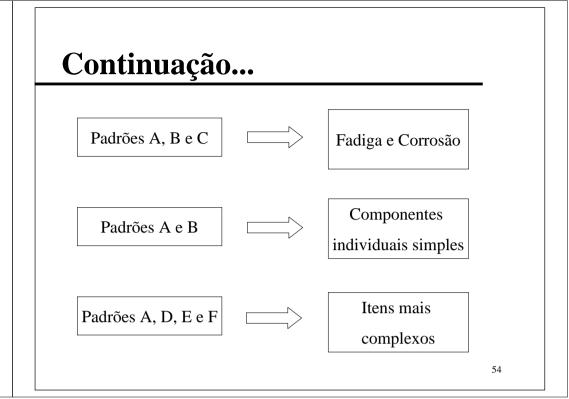
- ◆ Padrões de falha representam a freqüência de ocorrência das falhas em relação à idade operacional de um equipamento.
- ◆ A Manutenção Centrada em Confiabilidade adota um modelo no qual seis padrões de falha são utilizados p/ caracterizar a vida dos equipamentos.

49

Padrões de Falha Taxa Taxa Padrão D de Padrão A de Falha Falha Tempo Tempo Taxa Taxa Padrão E Padrão B Falha Falha Tempo Tempo Taxa Taxa Padrão F Padrão C Falha Falha Tempo Tempo 50

Continuação...

- ◆ Padrão A curva da banheira. Elevada ocorrência de falhas no início de operação, seguido de freqüência de falhas constante e, aumento na freqüência de falhas.
- ◆ Padrão B apresenta probabilidade constante de falha, seguida de uma zona de acentuado desgaste no fim da sua vida útil.


Continuação...

- ◆ Padrão C apresenta um aumento lento e gradual da taxa de falha, sem uma zona definida de desgaste.
- ◆ Padrão D mostra baixa taxa de falha quando o item é novo e sofre posteriormente um rápido aumento da taxa de falha p/ um nível constante.

Continuação...

◆ Padrão E - mostra uma taxa de falha constante em qualquer período.

◆ Padrão F - de falhas indica que uma maior probabilidade de falhas ocorre quando o componente é novo ou imediatamente após restauração.

