Tópicos Especiais em Qualidade

Simulação Simulação de Monte Carlo Exemplos e estudos de casos

Profa. Dra. Liane Werner

Simulação

- "A simulação de um sistema ou organismo é a operação de um modelo (ou simulador) que representa esse sistema ou organismo.
- O modelo é passível de manipulações que seriam difíceis de levar a cabo na entidade que ele representa, quer pelo preço, quer pela impraticabilidade ou impossibilidade de fazê-las.
- As propriedades concernentes ao comportamento de um sistema ou subsistema podem ser inferidas estudando-se a operação do modelo".

Simulação

- Uma das variedades da simulação é o método de Monte Carlo que é uma técnica de simulação que tem base probabilística ou estocástica. Dois tipos de problema dão margem ao uso desta técnica:
 - (i) Os problemas que envolvem alguma forma de processo estocástico.
 - A demanda de consumidores, o tempo de produção são exemplos de variáveis que podem ser consideradas de natureza estocástica.
 - O método de Monte Carlo foi desenvolvido com base não apenas no uso da maioria das distribuições de probabilidade bem conhecidas, mas também para o caso de distribuições empíricas.
 - (ii) Certos problemas matemáticos não podem ser facilmente resolvidos (se houver solução) por métodos estritamente determinísticos.

Simulação

- A simulação de Monte Carlo é uma técnica para obtenção de informações sobre o desempenho do sistema a partir dos dados dos componentes.
- Ele consiste na "construção" de muitos sistemas a partir de cálculos computacionais e avaliação do desempenho de cada sistema sintetizado.

Simulação

- Considere um sistema que é composto por muitos componentes.
- Caso se tenha disponível mil unidades de cada componente que compõe esse sistema.
- Pode-se então construir mil sistemas e obter mil medidas do desempenho do sistema.

Simulação

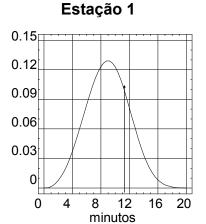
- Se, contudo, a estrutura do sistema o relacionamento entre os vários componentes e o desempenho do sistema é conhecida,
- o desempenho do sistema pode ser calculado a partir das medidas dos componentes sem de fato construir os sistemas.

Simulação

- Agora, se em vez de se ter mil unidades de cada componente, se conhece a distribuição de cada componente,
- é possível obter as medidas desses componentes pelo comportamento de mil valores extraídos de cada distribuição.
- Esses valores aleatórios podem ser usados para calcular o desempenho dos mil sistemas.

Este procedimento, é o método de Monte Carlo

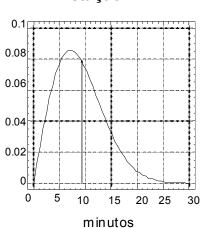
Simulação de Monte Carlo istut . dostribilistatistic SELECTO 44K TOM HALDKIA HATÜK D DE CADA DISTRIB KERKT K Mail as HERES. 14.90 () BASEATO 48XXES KHILAÇ'ÂC KNITKH HAILORES, CALCOURAR COMMONMENTED COESEMINACE FMA idikana sest 30 F.T VÁRION VALOBBE DI Desimp 1/0 sist.


Exemplo

Simular o tempo total de teste e reparo de placas de circuito impresso

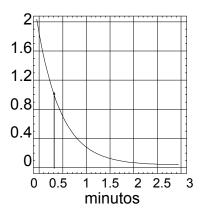
- Em uma fábrica de placas de circuito impresso, a seção de teste e reparo é constituída de três estações:
 - a primeira onde é realizada a inspeção visual,
 - a segunda onde são realizados os retoques de solda e
 - a terceira onde executa-se o teste final, para verificar se a placa está funcionando.

Exemplo


- A distribuição do tempo de verificação visual, que refere-se a primeira estação
- tem distribuição normal, com média 9 minutos e desvio padrão de três minutos.
- Um valor aleatório é selecionado dessa distribuição – por exemplo, 11,3 minutos.

Exemplo

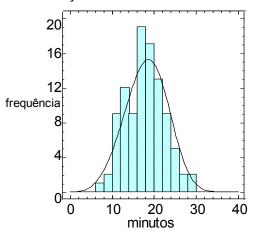
- A distribuição do tempo de reparo, que refere-se a segunda estação
- tem distribuição Weibull com $\gamma = 2$ e $\theta = 10$,
- de onde observa-se, por exemplo, um valor aleatório é de 9,2 minutos.


Estação 2

Exemplo

- A distribuição do tempo de teste final, que referese a terceira estação
- tem distribuição exponencial com λ=1 minuto,
- de onde observa-se, por exemplo, um valor aleatório é de 0,3 minutos.

Estação 3


Exemplo

- O tempo total da 1ª simulação do sistema é de 20,8 minutos.
- Simulando várias vezes, obtém-se um novo resultado para o tempo total do processo de verificação, em cada repetição da simulação.
- Os dez primeiros resultados obtidos nas 100 simulações feitas, encontram-se ao lado.

Esta ç ão 1	Estação 2	Estação 3	Tempo total de processo
11,3	9,2	0,3	20,8
10,5	10,1	0,8	21,4
9,7	11,3	0,4	21,4
10,3	8,8	0,3	19,4
8,6	12,2	0,4	21,2
9,5	11,7	0,6	21,8
12,9	8,7	0,1	21,7
10,3	7,3	0,5	18,1
9,9	10,9	0,3	21,1
11,2	9,1	0,2	20,5

Exemplo

SIMULAÇÃO DAS ESTAÇÕES DA SEÇÃO DE TESTE E REPARO

Simulação de Monte Carlo

- Ao realizar-se simulação, o que se obtem é um conjunto de valores para uma variável de resposta, que pode ser tratado estatisticamente, como pode-se observar no exemplo.
- Além disso, a simulação de Monte Carlo é um método de amostragem, e a resposta está sujeita a erros, isto é,
- mesmo que se tenha um tamanho de amostra grande, ainda assim se está sujeito que a estimativa obtida não seja exatamente igual ao parâmetro.

Estudo de Caso de Simulação Modelagem dos Tempos de Falha ao Longo do Calendário

PROFa. LIANE WERNER

- Para ser possível oferecer prazos de garantia é necessário que a empresa conheça o produto que está entregando ao consumidor.
- Independente do produto, esse estará sujeito a falhas e, para que a empresa possa fornecer prazos atrativos de garantia, sem sofrer grandes perdas,
- é importante ter acesso a informação referente à possível data de ocorrência de falha.
- Além disso, precisa certificar-se que no prazo de garantia oferecido não exista uma grande concentração das ocorrências de falha.

Caso - Modelagem dos Tempos de Falha ao Longo do Calendário

- X_2 : O tempo de uso do produto, em horas por dia:
 - dependendo do produto e do cliente, o uso efetivo pode ser de poucos minutos a várias horas por dia.
 - Um uso mais intenso implica maior desgaste, e a quebra é antecipada no calendário.
 - O uso efetivo pode ser conhecido através de uma pesquisa de mercado junto aos clientes.
- X_3 : O intervalo de tempo entre a manufatura e a venda, em dias:
 - após a manufatura, o produto não é imediatamente colocado em uso.
 - Pode demorar de alguns dias a alguns meses para o produto ser transportado para a revenda e chegar efetivamente às mãos do consumidor.
 - Essa informação pode ser obtida com uma pesquisa de mercado junto às revendas.

Caso - Modelagem dos Tempos de Falha ao Longo do Calendário

- Na busca da solução para esse impasse propõe-se uma abordagem: modelagem dos tempos de falha ao longo do calendário.
- Para realizar essa modelagem, é preciso, inicialmente, conhecer a distribuição das seguintes variáveis aleatórias:
- X_1 : O tempo de vida do produto, em horas contínuas de uso:
 - Consiste em conhecer o comportamento do produto, considerando as horas de uso acumuladas até a ocorrência de falha.
 - Em geral, o setor de engenharia detém essa informação.
 - Ela pode ser obtida através de ensaios de laboratório ou em ensaios de campo.
 - Via de regra, a análise é feita tomando como base o resultado de ensaios acelerados, pois dessa forma é possível diminuir o tempo de desenvolvimento e aceitação do produto.

Caso - Modelagem dos Tempos de Falha ao Longo do Calendário

- Conhecidas as informações das três variáveis X₁, X₂, X₃ é possível modelar o comportamento das falhas ao longo do calendário.
- É importante salientar que em muitas situações os grupos de clientes utilizam o mesmo produto com intensidades diferenciadas.
- Nesse caso além de conhecer X₂ (tempo de uso em horas por dia) também é necessário conhecer a intensidade com que o produto é utilizado por um determinado grupo de cliente.
- A situação a ser abordada é apenas para um grupo de clientes.

O procedimento passo a passo é o seguinte:

 Passo 1: Calcular o intervalo de tempo no calendário entre o início do uso do produto até a primeira falha. Esse tempo é computado como o quociente entre o tempo de vida do produto, em horas de uso contínuo, e o tempo de uso do produto, em horas por dia:

$$Y = X_1 / X_2$$

 Passo 2: Como o produto não sai da fábrica diretamente às mãos do consumidor é preciso somar a Y o intervalo de tempo entre a manufatura e a venda. Assim, resulta:

$$Z = Y + X_3 = (X_1 / X_2) + X_3$$

Caso - Modelagem dos Tempos de Falha ao Longo do Calendário

- Passo 4: Discretização da distribuição simulada.
- A variável *Z* expressa o comportamento dos tempos entre a manufatura e a falha de forma continuada em dias do calendário.
- O que interessa é conhecer a proporção ou número de falhas em certos períodos de tempo.
- Por isso, discretiza-se a distribuição dos valores de *Z* em intervalos convenientes de tempo (falhas mês a mês, por exemplo)
- e para cada intervalo de tempo (mês) tem-se a frequência f_i de falhas.
- A discretização dos resultados irá facilitar as decisões de cunho administrativo, tal como dimensionar as equipes de assistência técnica.

Caso - Modelagem dos Tempos de Falha ao Longo do Calendário

- Passo 3: Simulação da distribuição resultante.
- Fazendo uso do Método da Simulação de Monte Carlo, valores aleatórios são gerados para cada uma das variáveis iniciais X₁, X₂ e X₃, e o comportamento de Z é analisado.
- Gerando-se uma amostra suficientemente grande, é possível inferir a respeito da distribuição dos valores de *Z*,
- que representam o tempo entre a manufatura e a falha, em dias do calendário, para todas as quebras do produto.

Caso - Modelagem dos Tempos de Falha ao Longo do Calendário

- *Passo* 5: Para modelar o fato de que nem todas as quebras são reportadas ao fabricante, usa-se o fator k_0 , chamado de fator de redução de reclamações.
- Assim genericamente, tem-se:

$$R_i = k_0 x f_i$$

onde: R_i representa a estimativa do número de reclamações para o mês i;

 k_0 é o fator de redução de reclamações; ($k_0 \le 1,0$)

 f_i representa a estimativa do número de quebras para o mês i;

 Introduzindo o fator k₀, obtém-se o número de falhas do produto que são reportadas ao fabricante (reclamações ocorridas mês a mês ao longo do calendário).

- Passo 6: Além da estimativa pontual para cada espaço de tempo,
- também há interesse em calcular intervalos de confiança para as estimativas de quebras/reclamações *ao longo do calendário*.
- Esses cálculos permitem concluir, com embasamento estatístico, a respeito de uma eventual melhora ou degradação no desempenho do produto.

Caso - Modelagem dos Tempos de Falha ao Longo do Calendário

- Em seguida, são feitas estimativas de confiabilidade embasadas em estudos de simulação.
- O procedimento utilizado é a partir do conhecimento da distribuição do número de reclamações mês a mês, Z,
- realizar várias simulações até que obtenha uma distribuição do tempo de vida do produto (X_I) que gere um número de reclamações mês a mês próximas às observadas.
- Por fim será previsto o número de reclamações mês a mês, construindo também um intervalo de confiança, levando em conta a programação da produção.

Caso - Modelagem dos Tempos de Falha ao Longo do Calendário

- Uma aplicação prática de um produto eletro-mecânico será utilizada para elucidar o método.
- Serão analisadas todas as quebras reportadas, ou seja, as reclamações que são provenientes dos dados de garantia disponíveis para o produto no período de dois anos.
- Inicialmente é feita uma apresentação das informações extraídas do banco de dados da assistência técnica,
- de onde verificou-se o tempo do uso do produto pelos clientes (X_2) e o intervalo de tempo entre a manufatura e a venda (X_3) .

Caso - Modelagem dos Tempos de Falha ao Longo do Calendário

- A tabela que será apresentada mostra um sumário da produção, reclamações e reclamações associadas, para o produto.
- Reclamações: total de notificações à fábrica de reclamações efetuadas no mês em questão, correspondendo aos produtos produzidos em qualquer momento no passado;
- *Reclamações associadas*: total de reclamações associadas aos produtos produzidos no mês em questão, correspondendo a reclamações efetuadas em qualquer momento no futuro.

- À esquerda da Tabela tem-se o mês e ano, a quantidade de produtos produzidos, além das quantidades de produtos vendidos e as reclamações no mês.
- À direita da Tabela observa-se as reclamações associadas e o percentual de reclamações (reclamações associadas/produzido) relativas ao mês referenciado.

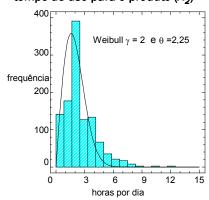
	lam ações m					iadas mês a mê	
mês/ano	produzido	vendido	reclamações *	mêsAmo	produzido	reclamações associadas ::	%
Mêsl An o A	32	44	37	Mês I/ano A	32	2	6,25
Mês2Amo A	187	218	0	Mês2/ano A	187	6	3,21
Mês3Amo A	296	275	111	Mês3/ano A	296	38	12,84
Mêstano A	492	465	98	Mês4/ano A	492	2	0,41
Mês5Amo A	632	334	97	Mês5/ano A	632	62	9,81
Mês6Amo A	672	688	54	Mês6/ano A	672	40	5,95
Mês7Amo A	396	601	18	Mês7/ano A	396	49	12,37
Més8Amo A	283	539	0	Mês8/ano A	283	44	15.54
Mês9Amo A	536	499	115	Mês9/ano A	536	60	11,19
Mêsl0/ano A	385	289	54	Mas10/ene A	385	39	10,13
Mêsl l/ano A	0	229	13	Masll /ma A	0	0	Ιó
Mês12/ano A	20	200	72	Mas12/ene A	20	0	0
Mês I/ano B	152	210	0	Mês I/ano B	152	31	20,39
Mês2/ano B	446	531	20	Mês2Amo B	446	46	10,31
Mês3/ano B	654	681	41	Mês3Amo B	654	51	7,80
Mês4/ano B	1003	544	106	Mês4Amo B	1003	95	9,47
Mês5/anoB	1023	1478	46	Mês5Amo B	1023	70	6,84
Mês6/ano B	1924	1930	90	Mês6Ano B	1924	131	6,81
Mês7/ano B	1836	1782	69	Mês7Amo B	1836	89	4,85
Mês8/ano B	1717	1756	81	Mês8Amo B	1717	82	4,78
Mês9/ano B	2169	2186	30	Mês9Amo B	2169	77	3,55
Mês 10 Amo B	2139	2161	99	Me:10/ane B	2139	92	4,30
Mês llAmo B	1401	1383	153	Mésll/ane B	1401	46	3,28
Mês 12Amo B	1061	1071	185	Mas12/ana B	1061	63	5,94
Mês I/ano C	339	301	0	Mês I/ano C	339	14	4,13
Mês2/anoC	718	728	87	Mês2Amo C	718	31	4,32
Mês3/anoC	2871	2912	58	Mês3Amo C	2871	111	3,87
Mês4/amo C	1482	1525	118	Mês4Ano C	1482	40	2,70
Mês5/anoC	2938	2756	109	Mês5Amo C	2938	89	3,03
Mês6/ano C	2501	2688	225	Mês6Amo C	2501	34	1,36
Mês7/anoC	2963	604	117	Mês7Amo C	2963	26	0,88
Mês8/ano C	634	-	92	Mês8Ano C	634	3	0,47
total	33902	31608	2395	total	33902	1535	T

Caso - Modelagem dos Tempos de Falha ao Longo do Calendário

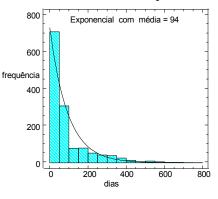
- Conhecidos os totais de reclamações mês a mês (ou seja, a distribuição do tempo até a falha em dias do calendário Z),
- usando o método de análise via simulação de Monte Carlo é possível estimar a confiabilidade dos produtos (ou seja, o tempo até a falha em horas de uso contínuo X_I).
- A idéia é: dado os modelos ajustados para as variáveis aleatórias X_2 e X_3 , alterar o modelo para variável X_I até obter uma distribuição de probabilidade para Z que gere totais de reclamações mês a mês compatíveis com aqueles apresentados na Tabela (quadro à esquerda).

Caso - Modelagem dos Tempos de Falha ao Longo do Calendário

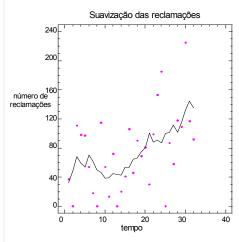
- Analisando o percentual de reclamações (associadas) que se vê a melhora significativa do desempenho do produto.
- Essa melhoria é observada através do percentual médio, que no Ano 1 era de 8% passando para 4% no período do mês 7 do Ano 2 até meados de Ano 3.
- Através do teste não-paramétrico Mann-Whitney para comparar as duas médias independentes confirmou-se a melhora do desempenho do produto ao nível de 5% de significância.
- Existem um grande percentual de reclamações que são informadas sem o número de série do produto, permanecendo o seu registro apenas na coluna de reclamações reportadas da tabela,
- mas não constam na coluna de reclamações associadas, uma vez que se perde o rastreamento da informação.


Caso - Modelagem dos Tempos de Falha ao Longo do Calendário

- Para obter-se os valores da distribuição de X₁ é necessário primeiramente ajustar as distribuições para X₂ e X₃.
- Será utilizado as informações provenientes do banco de dados da assistência técnica, de onde se obteve os histogramas para X₂ e X₃.
- Após, ajustamos uma distribuição de probabilidade a esses histogramas e obtém-se os modelos probabilísticos para o comportamento do tempo de uso do produto pelos clientes e do intervalo de tempo que os produtos permanecem na revenda, desde a fabricação até a venda ao usuário final.
- Para a variável tempo de uso do cliente (X₂) foi introduzida uma redução no parâmetro de escala.


- Essa correção foi introduzida pela necessidade de remover o viés que existe no banco de dados da assistência técnica.
- Estima-se que a população de clientes utilize o produto por um período (horas/semana) 25% menor que aquele utilizado pelo grupo registrado no banco de dados.
- Essa estimativa foi baseada no conhecimento dos engenheiros da assistência técnica, que possuem outras fontes de informação (resultado de pesquisas de mercado) referentes ao tempo de uso do produto.

Caso - Modelagem dos Tempos de Falha ao Longo do Calendário


Distribuição de probabilidade do tempo de uso para o produto (X₂)

Distribuição de probabilidade do intervalo de tempo entre a manufatura e a venda (X₃)

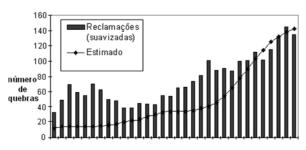
Caso - Modelagem dos Tempos de Falha ao Longo do Calendário

- Conforme as reclamações pode-se observar que ocorrem muitas oscilações.
- As oscilações são devidas como:
 - aglomeração dos registros (revendas) até repassar as informações (fábrica) e
 - o período de férias no setor de garantia da fábrica - não realiza registro.
- Para minimizar essas oscilações usou-se a suavização de médias móveis.
- Devido a natureza das distorções, decidiuse utilizar um período de 7 meses, para efetuar a suavização.
- Os dados suavizados são mais representativos do que o fluxo de reclamações que chegam a assistência técnica e, por isso, serão utilizados na análise.

Caso - Modelagem dos Tempos de Falha ao Longo do Calendário

- Para obter a distribuição de X_I (tempo até a falha em horas de uso contínuo), aproxima-se, através de simulação, o comportamento das reclamações mês a mês.
- A simulação é feita considerando o mesmo modelo de distribuição de probabilidade para X_I (Weibull), alterando apenas os parâmetros do modelo até obter o resultado que melhor se ajusta às reclamações observadas mês a mês (Z).
- Como as distribuições de X₂ e X₃ e Z (suavizado) são conhecidas, utilizamos essa sistemática a fim de obter os parâmetros da distribuição de probabilidade de X₁.

- Para realizar essa análise, leva-se em conta:
 - (i) A programação da produção.
 - (ii) O fator de correção para a porcentagem de quebras não reportadas,

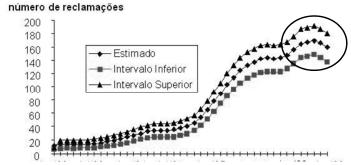

nessa análise foi de 0,7, indicando que somente 70% dos clientes com direito a garantia reportaram seus problemas ou tiveram sua reclamação chegando ao conhecimento do fabricante (algumas reclamações são filtradas na revenda).

(iii) As estimativas da quantidade de unidades vendidas, pois o que é produzido em certo mês permanece por algum tempo nas revendas.

Pelo fato de permanecer na revenda as unidades levam algum tempo até que comecem a serem usadas efetivamente, defasando assim o período até que ocorra a falha.

Caso - Modelagem dos Tempos de Falha ao Longo do Calendário

- Ajustando uma distribuição de X_I para o período do ano 4 encontra-se como o melhor modelo uma distribuição de Weibull com γ = 1,5 e θ = 2100.
- Observa-se que o modelo de Weibull com $\gamma = 1,5$ e $\theta = 2100$ fornece um bom ajuste para o período de ano 3.
- Contudo, esse modelo subestima o número de reclamações que ocorreram no ano2/ano3, uma vez que nesse período (no passado) a confiabilidade do produto era menor.



Caso - Modelagem dos Tempos de Falha ao Longo do Calendário

- Através da análise do percentual de reclamações (associadas) detectou-se uma alteração (melhoria) na confiabilidade do produto ao passar do período de ano1/ano2 para o período de ano2/ano3.
- Para reiterar essa análise foi realizado um ajuste para o número de reclamações no período de ano1/ano2, o que resultou em super estimativas para o número de reclamações no período de ano3.
- Essas estimativas altas indicam que a confiabilidade de produto se modificou (melhorou), assim para estimar a atual confiabilidade do produto vamos ajustar o número de reclamações mês a mês no ano3.

Caso - Modelagem dos Tempos de Falha ao Longo do Calendário

- Levantamos a programação da produção até ano3 e estimamos a produção do ano4 utilizando análise de séries temporais, ajustando um modelo ARIMA.
- Observa-se que no período de ano1/ano2 a média estimada de reclamações era próxima de 20, crescendo no ano3 devido ao aumento da produção.
- Com base no modelo simulado e nas previsões de produção, foi possível obter o comportamento do número de reclamações previstas para o primeiro semestre do ano ano4.
- Cabe ressaltar que a produção do produto tem crescido e aponta para uma estabilização. O pequeno declínio que se observa no final da curva ajustada se deve ao decréscimo apresentado nos últimos meses, que são os meses de baixa produção.

• As estimativas foram feitas tomando como base a confiabilidade atual do produto, ou seja, considerando que os tempos até a falha deste produto sigam um modelo de Weibull com γ =1,5 e θ = 2100.

Werner, L. Modelagem dos tempos de falhas ao longo do calendário. 1996. xi, 95 f.: il. Dissertação (mestrado) - Universidade Federal do Rio Grande do Sul. Programa de Pós-Graduação em Engenharia de Produção, Porto Alegre, RS, 1996.

MODELO DE SIMULAÇÃO BASEADO NO

MÉTODO DE MONTE CARLO PARA AVALIAÇÃO DE INVESTIMENTO EM MÁQUINAS AUTOMÁTICAS DE VENDA

(VII SEMEAD)

WAGNER CEZAR LUCATO

Universidade Metodista de Piracicaba

Modelagem e Simulação

- Com essa configuração a máquina entrou em operação no local selecionado por 60 dias,
- durante este período fez-se um registro diário dos produtos vendidos por tipo.
- O experimento, forneceu os seguintes resultados, cujos detalhes acham-se mostrados na tabela

			7	ENDAS 1	REALIZA	DAS (e	m unidad	es)	
Dia	Data	CC	CL	GA	SL	TS	FL	GD	Total
1	1/set	13	10	11	7	2	6	7	56
2	2/set	12	11	12	6	1	8	6	56
5	5/set	13	11	12	7	2	6	7	58
57	27/out	10	10	10	7	0	5	6	48
58	28/out	12	9	11	6	1	6	5	49
59	29/out	11	8	8	9	0	4	7	47
60	30/out	14	11	12	7	2	6	7	59
Total		755	578	629	393	87	353	381	3175
Média	Diária	13	10	10	7	1	6	6	53
Partic	ipação	23,8%	18,2%	19,8%	12,4%	2,7%	11,1%	12,0%	100,00%

- Com base nesses dados foi possível determinar o diagrama de freqüência das vendas observadas (Gráfico 1)
- Da mesma forma pode-se estabelecer o diagrama das frequências relativas acumuladas,
- que será utilizado para simular a venda diária.

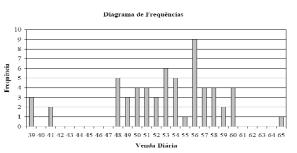


Gráfico 1. Diagrama de freqüências das vendas observadas na fase exploratória Fonte Medicões dórias realizadas

Modelagem e Simulação

- A aplicação do método de Monte Carlo para a simulação que se pretende realizar deverá ser feita utilizado o seguinte procedimento:
- Considere-se, por exemplo, que se pretenda simular a venda de refrigerantes em uma dada máquina no dia 05 de janeiro.
- Recorrendo-se à tabela ou gerador de números aleatórios obtém-se, por exemplo, o número 36.

Modelagem e Simulação

• Entrando-se no eixo das freqüências relativas acumuladas com esse número (0,36), verifica-se no eixo das vendas diárias que ele corresponderia a uma venda simulada total de 52 unidades nesse dia (vide Gráfico 2).

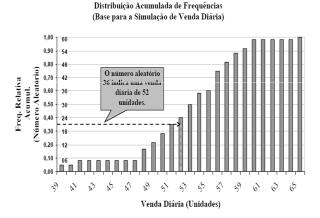


Gráfico 2. Diagrama de freqüências relativas acumuladas das vendas observadas. Fonte: Gráfico 1.

Modelagem e Simulação

- Como a participação típica de cada produto na venda total da máquina já foi estabelecida no teste exploratório realizado,
- pode-se assumir que no dia 05 de janeiro a venda simulada para cada produto seja representada pelos seguintes valores

Procedimento => replicado; Cobrindo todo o período que se pretenda realizar. Por exemplo, um ano.

Produto	Código	Código % Partic.		
Total da Venda Simi	ılada	100,0%	52	
Coca Cola	CC	23,8%	13	
Coca Cola Light	CL	18,2%	9	
Guaraná Antártica	GA	19,8%	10	
Soda Limonada Ant	SL	12,4%	6	
Tônica Schoeps	TS	2,7%	2	
Fanta Laranja	FL	11,1%	6	
Guar. Antártica Diet	GD	12,0%	6	

- O consumo de refrigerantes reflete os padrões de setembro e outubro na zona sul de São Paulo, já que esse foi o período do teste.
- Porém o consumo de refrigerantes varia de acordo com a época do ano.
- É necessário então definir um critério de ajuste dos volumes consumidos que considere essa variação.
- Para isso, fez-se o levantamento do volume total de refrigerantes consumidos, mês a mês, nos últimos 3 anos, estabelecendo-se uma média de consumo para cada mês do ano.
- Assumindo-se os volumes médios observados para os meses de setembro e outubro como um índice de valor 1,00, pode-se determinar o consumo relativo dos demais meses em relação a essa base.

Modelagem e Simulação

 Cria-se assim um fator de sazonalidade que poderá corrigir os volumes simulados da base observada (set / out) para o mês considerado.

Mês	1999	2000	2001	Consumo Médio	Fator de Sazonalidade
Janeiro	2.250	2.358	2.311	2.306	1,18
Fevereiro	2.032	2.130	2.087	2.083	1,06
Março	2.137	2.240	2.195	2.190	1,12
Abril	2.030	2.127	2.085	2.081	1,06
Maio	1.827	1.915	1.876	1.873	0,96
Junho	1.790	1.876	1.838	1.835	0,94
Julho	1.650	1.729	1.695	1.691	0,86
Agosto	1.828	1.916	1.877	1.874	0,96
Setembro	1.911	2.003	1.963	1.959	1,00
Outubro	1.915	2.007	1.967	1.963	1,00
Novembro	2.116	2.218	2.173	2.169	1,11
Dezembro	2.294	2.404	2.356	2.351	1,20
Total	23.780	24.921	24.423	24.375	

Modelagem e Simulação

- Outros dois aspectos a serem considerados para a simulação pretendida e que não foram considerados na fase exploratória:
- o abastecimento que consiste em:
 - retirar as moedas e cédulas depositadas na máquina (trocando-se os cofres cheios por outros vazios),
 - completar a carga da máquina repondo as quantidades vendidas de cada produto,
 - limpar o equipamento e
 - fazer a verificação de diversos itens a título de manutenção preventiva.
- Pelos padrões de consumo médio observado o abastecimento poderá ser feito a cada 5 dias, intervalo este a ser usado na simulação.

Modelagem e Simulação

- A manutenção do equipamento propriamente dita envolve o reparo da máquina quando ocorre uma pane, uma quebra não prevista ou quando é perpetrado algum ato de vandalismo.
- Nesse caso a assistência técnica do operador do equipamento é acionada e comparece ao local em questão de horas.
- Por questão de conservadorismo, far-se-á a pressuposição que entre a parada do equipamento, a chamada da assistência técnica e o reparo decorram 12 horas.
- Ou seja, quando ocorrer um problema de manutenção, o consumo médio diário ficará reduzido em 50%.

- Outro problema relacionado à manutenção refere-se à sua previsibilidade. Não há como se programar o atendimento já que a ocorrência de quebras ou atos de vandalismo são fenômenos aleatórios.
- Para refletir esse fato na simulação, levou-se em conta a informação do fabricante da máquina que indica haver uma probabilidade de quebra da ordem de 7%,
- ou seja, a cada 100 dias de operação, é de se esperar que em 7 tenha havido um chamado para conserto do equipamento.
- Para introduzir essa variável no modelo de simulação, foram escolhidos ao acaso na tabela de números aleatórios 7 números (79, 78, 54, 61, 45, 60 e 06) que representam 7% das possibilidades de ocorrência nos valores aleatórios simulados.
- Assim, na simulação dos meses de operação, toda vez que o número randômico obtido for algum dos indicados acima, assume-se que naquele dia houve necessidade de manutenção e o volume resultante é reduzido em 50%.

Modelagem e Simulação

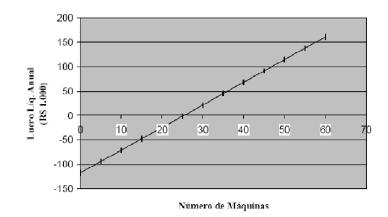
- Os custos de cada abastecimento e de cada atendimento de manutenção foram obtidos junto ao fabricante das máquinas de venda automática e refletem as práticas usuais do mercado.
- Outro custo a ser considerado é o aluguel do ponto.
- Neste segmento é usual que o operador da máquina pague ao proprietário do imóvel onde ela está instalada um aluguel do ponto (em geral, um % da receita bruta da máquina).

(R\$ / Mês)	Manutenção	Abastecimento				
Mão de Obra						
- Salário Direto	1.000,00	800,00				
- Encargos	1.000,00	800,00				
Aquisição de Peças	1.900,00					
Despesas com Veículo						
- Combustível & Lubrificantes	750,00	750,00				
- Depreciação	417,00	417,00				
- IPVA	67,00	67,00				
- Oficina	200,00	200,00				
- Pneus	25,00	25,00				
Total Mensal	5.359,00	3.059,00				
No. de Chamados Atendidos / Mês	84					
Custo por Chamada de Manutenção	63,80					
No. De Abastecimentos / Mês	No. De Abastecimentos / Mês					
Custo por Abastecimento		10,20				

Modelagem e Simulação

 Feitas essas considerações, pode-se partir para a simulação da operação de uma máquina em um determinado mês, pela replicação do método de simulação.

	1,18	le:	onalidad	tor de Saz	Fa		Mês JA					
1		•	duto		Venda	1						
	DG	FL	TS	CC	Ajust.	Venda	Núm.					
Evento	12,00%	11,10%	2,74%	12,37%	19,82%	18,19%	23,77%	Sazonal.	Diária	Aleat.	Dia	
Abast.	8	8	2	9	14	13	17	71	60	96	1	
1	6	5	1	6	9	8	11	46	39	3	2	
Manut	4	4	1	4	б	б	8	32	27	54	28	
	8	8	2	9	14	13	17	70	59	87	29	
	8	7	2	8	13	12	16	67	57	81	30	
Abast.	8	7	2	8	12	11	15	63	53	44	31	
Totais	228	211	52	235	377	346	452	1.900	Mês	endas do	V	
	1,40	1,40	1,70	1,40	1,40	1,40	1,40	irio	da Unitá	de Ven	Preço	
2.675,0	319,17	295,23	88,49	329,01	527,16	483,80	632,22	das	l de Ven	ita Tota	Rece	
	0,62	0,54	0.95	0,62	0,62	0,65	0,65	Unitário	rigerante	do Ref	Custo	
1.201,9	141,35	113,87	49,45	145,70	233,46	224,62	293,53	gerante	do Refri	o Total	Cust	
1473,0	177,82	181,35	39,04	183,3	293,70	259,18	338,69			gem Brt	. r	
55,1%	55,7%	61,4%	44,1%	55,7%	55,7%	53,6%	53,6%		ita	gem Bri	Mar	
									ional	o opera	Cust	
(71,40		7						- Abastecim. (R\$ 10.20 cada)				
(127,60		2						3.80 cada)	ão (R\$ 6	/Januten	- N	
(191,00		10,0%					la Bruta)	(% da Vend	o Ponto	Muguel o	- A	
1.006,5	Margem Liquida da Māquina											


Modelagem e Simulação

- Com base nessa determinação, pode-se repetir a simulação para os demais meses do ano,
- aplicando a mesma metodologia e estabelecendo, para cada mês, a receita total apurada pela máquina que,
- após as devidas deduções dos custos dos produtos vendidos, dos custos de abastecimento e de manutenção e do aluguel do ponto, gera a margem líquida do equipamento para o período considerado.
- A simulação do desempenho anual resultante da operação de 50 máquinas

	JAN	FEV	NOV	DEZ	TOTAL	% / VB
VENDAS BRUTAS POR MAQ	2.675	2.054	2,494	2.582	26.820	100.00%
- Abastecimento	71	51	61	71	765	2,85%
- Manutenção	128	255		191	2.042	7,61%
- Aluguel do Ponto	268	205	249	258	2.682	10,00%
VENDAS LÍQUIDAS POR MAQ	2.209	1.542	2.184	2.061	21.331	79,54%
CUSTO DO PROD VENDIDOS	1.202	923	1.121	1.160	12.051	44,93%
MARGEM LIQUIDA POR MAQ	1.007	619	1.063	901	9.280	34,60%
- % Venda Bruta	37,63%	30,16%	42,61%	34,89%		% sobre
NÚMERO TOTAL DE MAQ	50	50	50	50	50	Margem
MARGEM TOTAL	50.329	30.969	53.150	45.039	464.021	100,00%
CUSTOS FIXOS						
- Pro-Labore	4.000	4.000	4.000	4.000	48.000	10,34%
- Salários Indiretos	1.200	1.200	1.800	1.800	15.600	3,36%
- Encargos	1.068	1.068	1.602	1.602	13.884	2,99%
- Impostos	231	178	216	223	2.320	0,50%
- Comunicações	550	497	530	550	6.471	1,39%
- Viagens e Representações	500	500	500	500	6.000	1,29%
- Material de Escritório	220	200	240	220	2.670	0,58%
- Aluguel	750	750	750	750	9.000	1,94%
- Manutenção Predial	100	100	100	100	1.200	0,26%
- Luz e Água	98	92	94	90	1.205	0,26%
- Limpeza e Arrumação	150	150	225	225	1.950	0,42%
- Serviços Prest. Terceiros	350	350	350	350	4.200	0,91%
- Brindes e Presentes			250	250	500	0,11%
- Transportes	53	45	52	53	641	0,14%
- Depreciação	6.250	6.250	6.250	6.250	75.000	16,16%
- Copa e Refeições	75	75	75	75	900	0,19%
- Outros	250	250	250	250	3.000	0,65%
Total	15.845	15.705	17.284	17.288	192.541	41,49%
LUCRO LÍQUIDO	34.484	15.264	35.866	27.750	271.480	58,51%
ROS (% Venda Bruta)	25,8%	14,9%	28,8%	21,5%	20,2%	
Investimento Total	750.	000	ROI (TIR)			23,7%
			VPL (15%	a.a)	+R\$	160

- Como descrito, o modelo desenvolvido permite a simulação de um grande número de alternativas,
- estabelecendo-se valores distintos para os diversos parâmetros que o compõe.
- Para exemplificar a análise do comportamento do modelo,
- fez-se aqui somente a variação do número de máquinas utilizadas,
- mantendo-se constantes todas as demais variáveis.

Modelagem e Simulação

Conclusões

- Variação do lucro líquido anual em função do número de máquinas instaladas.
- Como se observa, numa primeira análise e para os parâmetros definidos, o número de máquinas mínimo a ser operado é de 25 unidades, já que nessas condições ocorre o ponto de equilíbrio (lucro zero).
- Um número menor de unidades gera prejuízo e um número maior produz lucro.
- Semelhantes considerações podem ser feitas para todas as demais variáveis do modelo,
- o que permite ao empreendedor avaliar adequadamente o impacto de cada consideração sobre os lucros e sobre a rentabilidade do projeto,
- antes de qualquer comprometimento de fundos, minimizando dessa forma os riscos das decisões que vierem a ser efetivamente tomadas.

LUCATO, Wagner C. Modelo de Simulação baseado no Método de Monte Carlo para Avaliação de Investimento em Máquinas Automáticas de Venda. VII SEMEAD. LUCATO, Wagner C. **Gestão de pequenas e médias empresas** – como resolver questões financeiras sem traumas. São Paulo, Fênix, 2003.